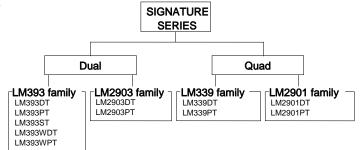


General-purpose Operational Amplifiers / Comparators

SIGNATURE SERIES Comparators

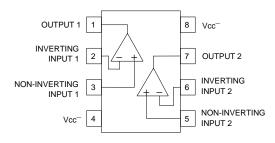


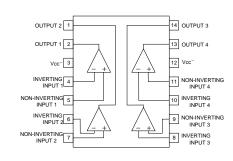
LM393DT,LM393PT,LM393ST,LM393WDT,LM393WPT, LM2903DT,LM2903PT,LM339DT,LM339PT,LM2901DT,LM2901PT

No.11094ECT04

Description

The Universal Standard LM393 / LM339 / LM2903 / LM2901 family monolithic ICs integrate two / four independent comparator circuits on a single chip and feature high gain, low power consumption, and an operating voltage range between 2[V] and 36[V] (single power supply).


Features


1) Operating temperature range

Commercial Grade LM339/393 family : $0[^{\circ}C]$ to + $70[^{\circ}C]$ Extended Industrial Grade LM2903/2901 family : $-40[^{\circ}C]$ to +125 $[^{\circ}C]$

- 2) Open collector output stage
- 3) Single / dual power supply compatible
- 4) Low supply current
 - 0.4[mA] typ. (LM2903/393 family)
 - 1.1[mA] typ. (LM2901/339 family)
- 5) Low input-bias current: 25[nA] typ.
- 6) Low input offset current: 5[nA] typ.
- 7) Common-mode input voltage range includes ground
- 8) Differential input voltage is possible to apply the absolute maximum ratings ±36[V].
- 9) Low output saturation voltage
- 10) TTL, MOS, CMOS compatible output

Pin Assignment

SO package8

TSSOP8

Mini SO8

SO package14 TSSOP14

LM393DT LM393WDT LM2903DT LM393PT LM393WPT LM2903PT

LM393ST

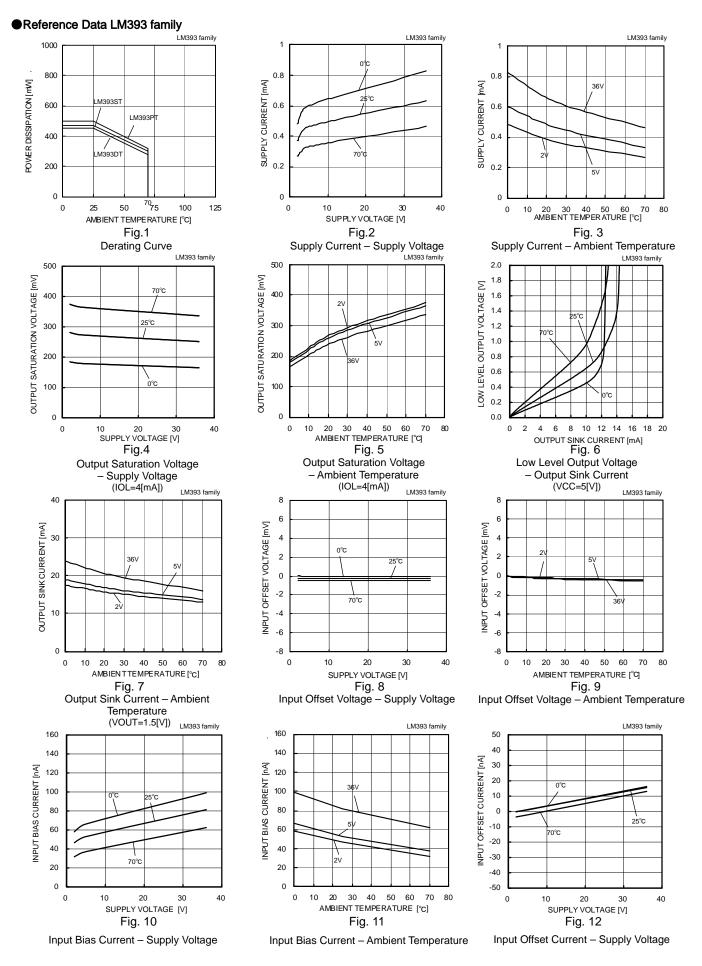
LM339DT LM2901DT LM339PT LM2901PT ● Absolute Maximum Ratings (Ta=25°C)

Parameter	Cymbol	Ratings										
Farameter	Symbol	LM393 family	LM339 family	LM2903 family	LM2901 family	Unit						
Supply Voltage	Vcc+-Vcc-	+36										
Differential Input Voltage	Vid	±36						±36				V
Common-mode Input Voltage Range	Vicm	-0.3 to +36										
Operating Temperature Range	Topr	0 to +70 -40 to +125				°C						
Storage Temperature Range	Tstg	-65 to +150						-65 to +150		°C		
Maximum Junction Temperature	Tjmax	+150										

●Electric Characteristics

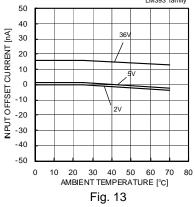
OLM393/339 family(Unless otherwise specified, Vcc⁺=+5[V])

			Limits												
Parameter	Symbol	Symbol	Symbol	Symbol	Symbol	Temperature range	LI	M393 fam	ily	LI	M339 fam	ily	Unit	Conditions	Fig. No.
			Min.	Тур.	Max.	Min.	Тур.	Max.							
Input Offset Voltage (*1)	VIO	25°C	-	1	7	_	1	7	mV	Vcc ⁺ =5 to 30[V],VO=1.4[V],	2				
input Offset Voltage (1)	VIO	full range	-	_	9	_	_	9	IIIV	Vicm=0 to -1.5[V]	2				
Input Offset Current (*1)	IIO	25°C	_	5	50	_	5	50	nA	VO=1.4[V]	2				
input Onset Current (1)	110	full range	-	_	150	_	_	150	Ĭ	VO=1.4[V]	2				
Input Bias Current (*1)	IIB	25°C	_	25	250	_	25	250	nA	VO=1.4[V]	2				
input bias current (1)		full range	_	_	400	_	_	400		VO=1.4[V]	2				
Large Signal Voltage Gain	AVD	25°C	25	200	_	25	200	_	V/mV	Vcc^{+} =15[V],VO=1 to 11[V], RL=15[kΩ]	2				
Supply Current	ICC	25°C	_	0.4	1	_	1.1	2	mA	Vcc ⁺ =5V,no load	3				
(All Comparators)	ICC	full range	_	1	2.5	_	1.3	2.5	mA	Vcc ⁺ =30[V],no load					
Input Common-mode	VICM	25°C	-	-	Vcc*-1.5	_	_	Vcc ⁺ -1.5	V	_	2				
Voltage Range	VICIVI	full range	_	_	Vcc*-2.0	_	_	Vcc+-2.0	V						
Differential InputVoltage	VID	25°C	-	_	Vcc ⁺	-	_	Vcc ⁺	V	_	_				
Low level Output Voltage	VOL	25°C	-	250	400	_	250	400	mV	VID=-1[V],Isink=4[mA]	3				
Low level Output voltage	VOL	full range	_	_	700	_	_	700	IIIV	VID=-1[V],1311K=4[I1IA]	3				
High level Output Current	IOH	25°C	_	0.1	-	_	0.1	-	nA	Vcc ⁺ =30[V],VID=1[V]	3				
riigirievei Output Ourient	1011	full range	_	_	1	_	_	1	μΑ	VO=30[V]	3				
Output Sink Current	Isink	25°C	6	16	_	6	16	_	mA	VID=-1[V],VO=1.5[V]	3				
Small Single Response Time	tRE	- 25°C	_	1.3	_	_	1.3	_	μs	RL=5.1[k Ω], Vcc ⁺ =5[V] VIN=100[mVp-p], Overdrive=5[mV]	3				
Large Single Response Time	tREL	250	_	300	_	_	300	_	ns	RL=5.1[kΩ], Vcc ⁺ =5[V] VIN=TTL input, Vref=1.4[V]	3				

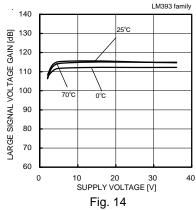

^(*1) Absolute value

OLM2903/2901 family(Unless otherwise specified, Vcc+=+5[V])

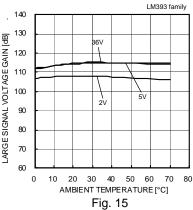
			Limits								
Parameter Symbo	Symbol	Temperature range	LM2903 family			LM2901 family			Unit	Conditions	Fig. No.
		95	Min.	Тур.	Max.	Min.	Тур.	Max.			
	VIO	25°C	_	2	7	_	1	7	mV	Vcc ⁺ =5 to 30[V],VO=1.4[V]	2
Input Offset Voltage (*2)	VIO	full range	-	_	15	-	_	15	mv	Vicm=0 to -1.5[V]	2
Input Offset Current (*2)	IIO	25°C	-	5	50	-	5	50	nA	VO=1.4[V]	2
input Onset Current (2)	IIO	full range	-	_	150	_	_	150	TIA.	VO=1.4[V]	
Input Bias Current (*2)	IIB	25°C	-	25	250	-	25	250	nA	VO=1.4[V]	2
input bias current (2)	IID	full range	-	_	400	_	_	400	TIA.	VO=1.4[V]	
Large Signal Voltage Gain	AVD	25°C	25	200	_	25	200	_	V/mV	Vcc^{+} =15[V],VO=1 to 11[V], RL=15[kΩ]	2
Supply Current	ICC	25°C	_	0.4	1	_	1.1	2	mA	Vcc ⁺ =5V,no load	- 3
(All Comparators)	ICC	full range	_	1	2.5	_	1.3	2.5	mA	Vcc ⁺ =30[V],no load	3
Input Common-mode	VICM	25°C	_	_	Vcc⁺-1.5	_	_	Vcc⁺-1.5	V	_	2
Voltage Range	VICIVI	full range	_	_	Vcc ⁺ -2.0	_	_	Vcc⁺-2.0	V		
Differential Input Voltage	VID	25°C	_	_	Vcc⁺	_	_	Vcc ⁺	V	_	_
Ott \/- t	VOL	25°C	-	250	400	_	250	400	\/	\/ID 45/1 leiele 45 A1	_
Low Level Output Voltage	VOL	full range	_	_	700	_	_	700	mV	VID=-1[V], Isink=4[mA]	3
High Level Output Current	Isink	25°C	_	0.1	_	_	0.1	_	nA	Vcc ⁺ =30[V],VID=1[V]	3
riigii Levei Output Current	ISIIIK	full range	_	_	1	_	_	1	μΑ	VO=30[V]	3
Output Sink Current	IOL	25°C	6	16	_	6	16	_	mA	VID=-1[V],VO=1.5[V]	3
Small Single Response Time	tRE	25°C	-	1.3	_	_	1.3	_	μs	RL=5.1[k Ω], Vcc ⁺ =5[V] VIN=100[mVp-p], Overdrive=5[mV]	3
Large Single Response Time	tREL	25°C	_	_	1.0	_	_	1.0	μs	TTL input Vref=1.4[V] RL=5.1[kΩ] Output voltage at 95%	3


^(*2) Absolute value

3/17



(*)The data above is ability value of sample, it is not guaranteed. LM393family: 0[°C]~+70[°C]


● Reference Data LM393 family

Input Offset Current - Ambient Temperature

Large Signal Voltage Gain
– Supply Voltage

Large Signal Voltage Gain

– Ambient Temperature

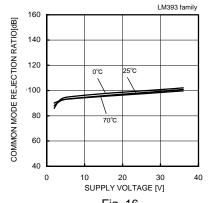


Fig. 16

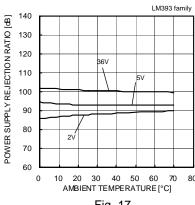


Fig. 17
Common Mode Rejection Ratio

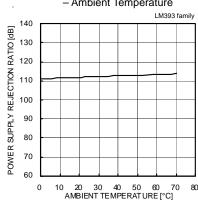
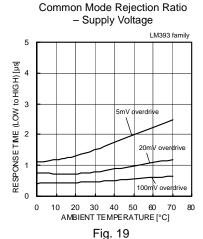



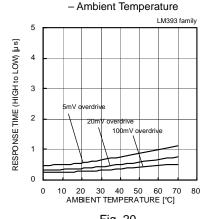
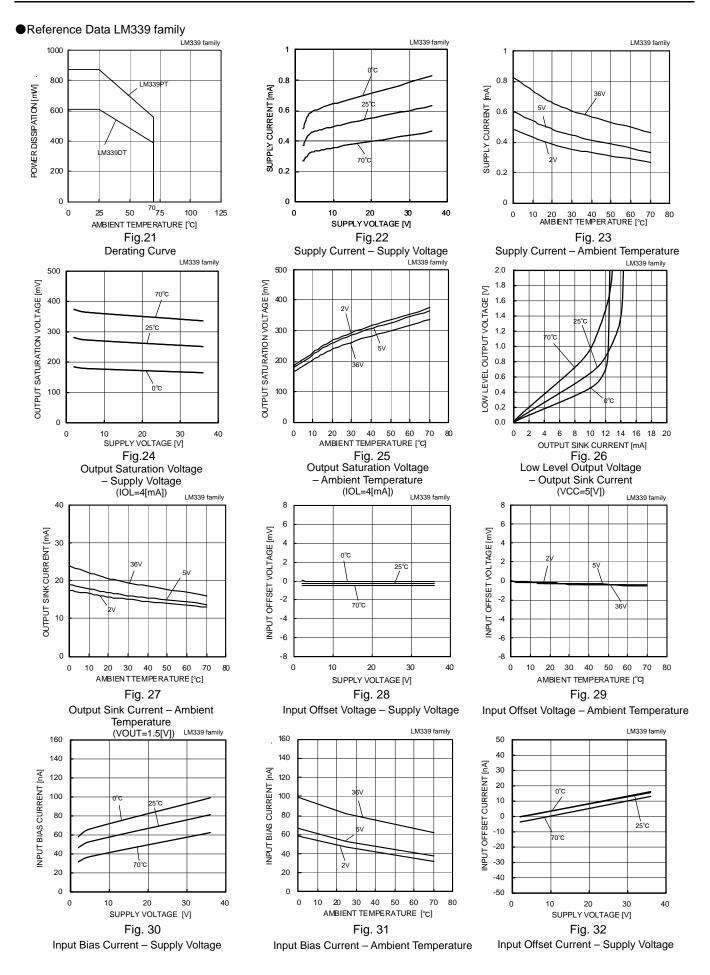
Fig. 18

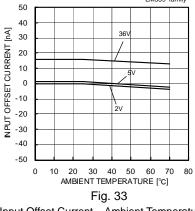
Power Supply Rejection Ratio

– Ambient Temperature

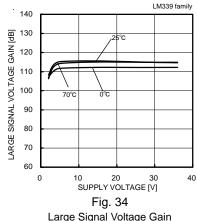
Response Time (Low to High)

– Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[kΩ])

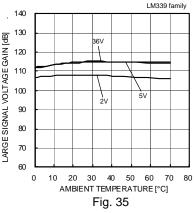



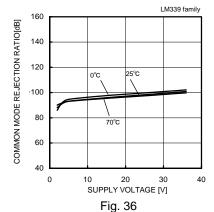

Fig. 20
Response Time (High to Low)
–Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[kΩ])

(*)The data above is ability value of sample, it is not guaranteed. LM393family: 0[°C]~+70[°C]



(*) The data above is ability value of sample, it is not guaranteed. LM339 family: $0[^{\circ}C] \sim +70[^{\circ}C]$


● Reference Data LM339 family


Input Offset Current - Ambient Temperature

Large Signal Voltage Gain Supply Voltage

Large Signal Voltage Gain - Ambient Temperature

Common Mode Rejection Ratio

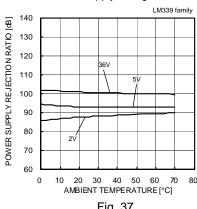
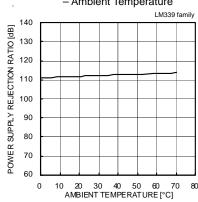



Fig. 37 Common Mode Rejection Ratio

Power Supply Rejection Ratio Ambient Temperature

Fig. 38

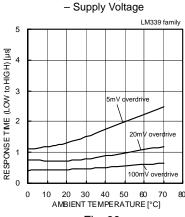


Fig. 39 Response Time (Low to High) – Ambient Temperature $(VCC=5[V],VRL=5[V],RL=5.1[k\Omega])$

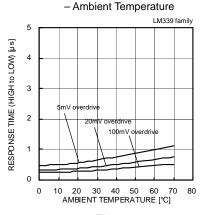
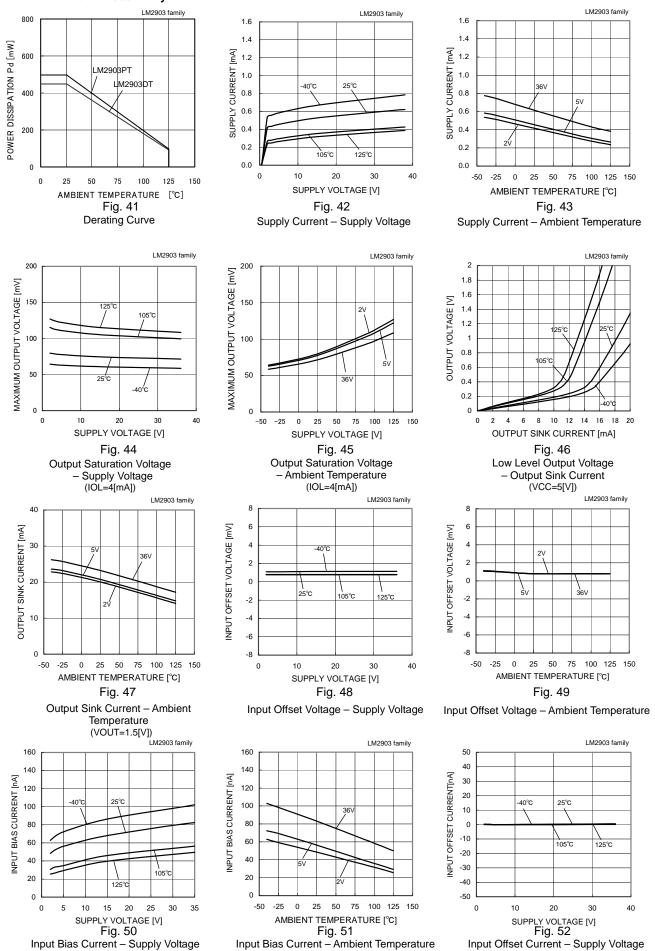
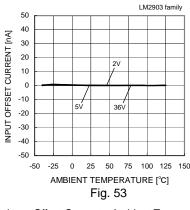
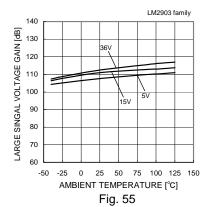



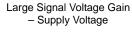
Fig. 40 Response Time (High to Low) -Ambient Temperature $(VCC=5[V],VRL=5[V],RL=5.1[k\Omega])$

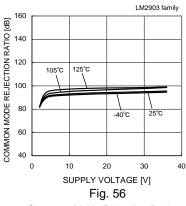

(*)The data above is ability value of sample, it is not guaranteed. LM339family: 0[°C]~+70[°C]

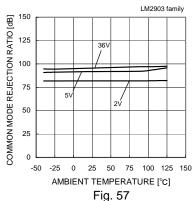
● Reference Data LM2903 family

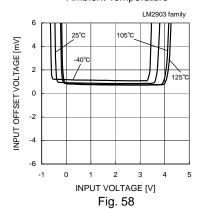


(*)The data above is ability value of sample, it is not guaranteed. LM2903family:-40[°C]~+125[°C]


● Reference Data LM2903 family

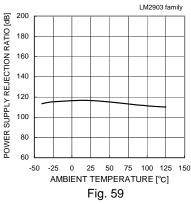


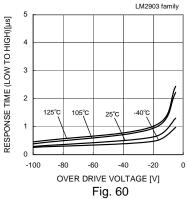

Input Offset Current – Ambient Temperature



Large Signal Voltage Gain

– Ambient Temperature

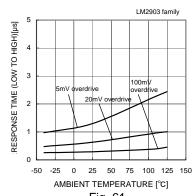




Common Mode Rejection Ratio
– Supply Voltage

Common Mode Rejection Ratio
- Ambient Temperature

Input Offset Voltage – Input Voltage (VCC=5V)



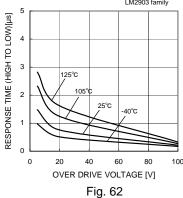

Fig. 59
Power Supply Rejection Ratio
– Ambient Temperature

Fig. 60

Response Time (Low to High)

– Over Drive Voltage
(VCC=5[V],VRL=5[V],RL=5.1[kΩ])

Fig. 61
Response Time (Low to High)
– Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[kΩ])

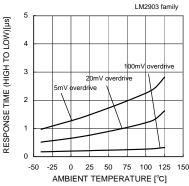
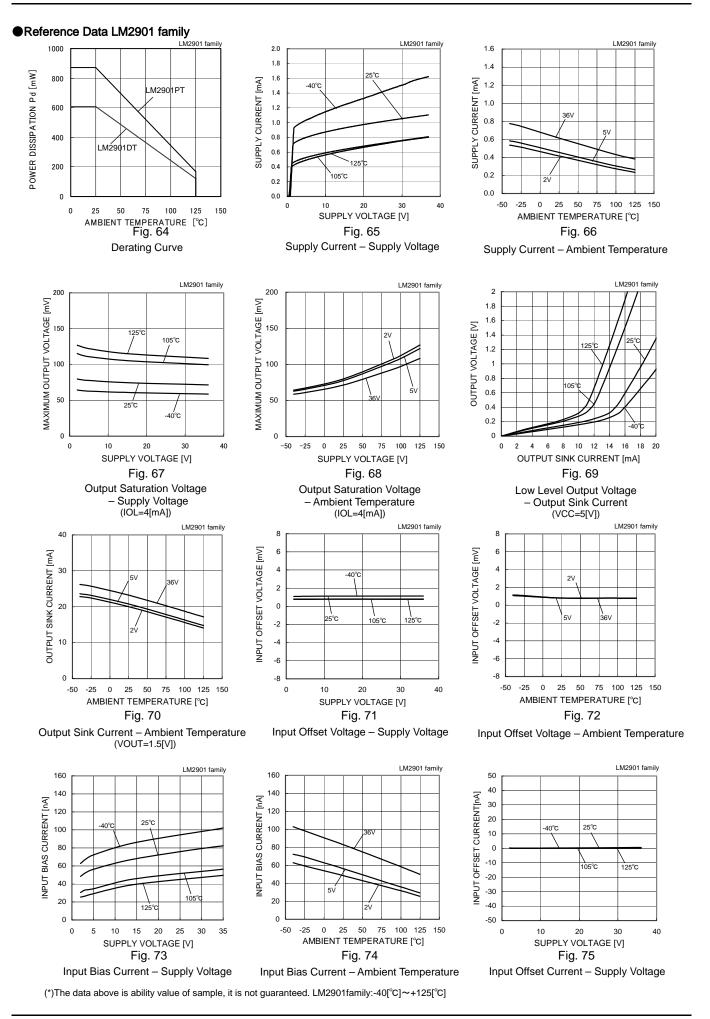
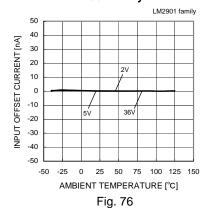
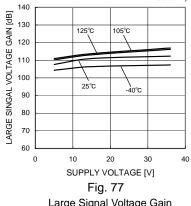



Fig. 63
Response Time (High to Low)
– Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[kΩ])


Response Time (High to Low)

– Over Drive Voltage
(VCC=5[V],VRL=5[V],RL=5.1[kΩ])


(*)The data above is ability value of sample, it is not guaranteed. LM2903family:-40[°C]~+125[°C]

●Reference Data LM2901 family

Input Offset Current – Ambient Temperature

LM2901 family

Large Signal Voltage Gain - Supply Voltage

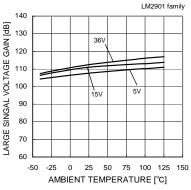


Fig. 78 Large Signal Voltage Gain - Ambient Temperature

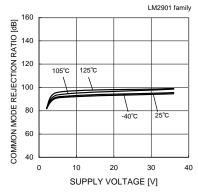


Fig. 79 Common Mode Rejection Ratio Supply Voltage

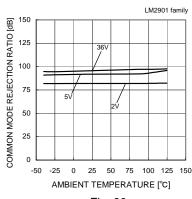
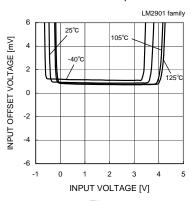
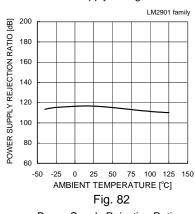
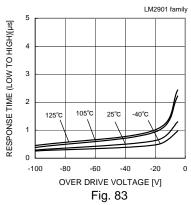
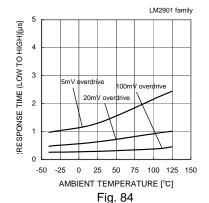
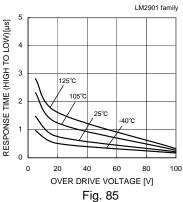


Fig. 80 Common Mode Rejection Ratio - Ambient Temperature


Fig. 81 Input Offset Voltage - Input Voltage (VCC=5V)


Power Supply Rejection Ratio - Ambient Temperature

Response Time (Low to High) - Over Drive Voltage (VCC=5[V],VRL=5[V],RL=5.1[k Ω])

Response Time (Low to High)
- Ambient Temperature $(VCC=5[V],VRL=5[V],RL=5.1[k\Omega])$

Response Time (High to Low) Over Drive Voltage $(VCC=5[V],VRL=5[V],RL=5.1[k\Omega])$

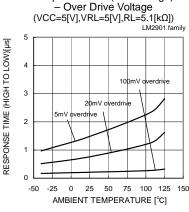


Fig. 86 Response Time (High to Low) - Ambient Temperature $(VCC=5[V],VRL=5[V],RL=5.1[k\Omega])$

(*)The data above is ability value of sample, it is not guaranteed. BA2901: LM2901family:-40[°C]~+125[°C]

●Circuit Diagram

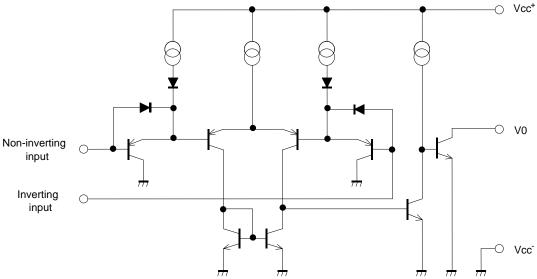


Fig.87 Circuit Diagram (each Comparator)

● Measurement Circuit 1 NULL Method Measurement Condition

Parameter	VF	S1	S1 S2		LM3	LM393/LM339 family			LM2903/LM2901 family				Calculation
Parameter	VF	31	32	S3	Vcc ⁺	Vcc	EK	Vicm	Vcc ⁺	Vcc	EK	Vicm	Calculation
Input Offset Voltage	VF1	ON	ON	ON	5 to 30	0	-1.4	0	5 to 30	0	-1.4	0	1
Input Offset Current	VF2	OFF	OFF	ON	5	0	-1.4	0	5	0	-1.4	0	2
Input Bias Current	VF3	OFF	ON	ON	5	0	-1.4	0	5	0	-1.4	0	3
Input bias Current	VF4	ON	OFF	5	0	-1.4	0	5	0	-1.4	0	3	
Large Signal Voltage Gain	VF5	ON	ON	ON	15	0	-1.4	0	15	0	-1.4	0	4
	VF6	OIN	JN ON		ON	ON	15	0	-11.4	0	15	0	-11.4

-Calculation-

1.Input offset voltage (Vio)

$$Vio = \frac{|VF1|}{1 + Rf/Rs} [V]$$

2. Input offset current (lio)

lio =
$$\frac{|VF2-VF1|}{Ri(1+Rf/Rs)}[A]$$

3. Input bias current (lb)

$$Ib = \frac{|VF4 - VF3|}{2 \times Ri(1 + Rf / Rs)} [A]$$

4.Large signal voltage gain (Av)

$$AV = 20 \times Log \frac{10 \times (1 + Rf/Rs)}{|VF6 - VF5|} [dB]$$

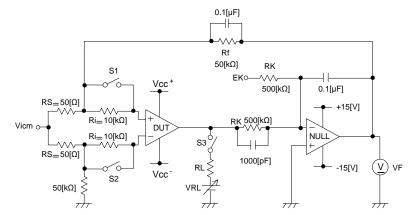


Fig.88 Measurement Circuit 1 (each Comparator)

● Measurement Circuit 2: Switch Condition

SW No.		SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7
Supply Current	_	OFF						
Output Sink Current	VOL=1.5[V]	OFF	ON	ON	OFF	ON	ON	OFF
Saturation Voltage	IOL=4[mA]	OFF	ON	ON	OFF	OFF	OFF	ON
Output Leakage Current	VOH=36[V]	OFF	ON	ON	OFF	OFF	OFF	ON
Pagnanga Tima	RL=5.1[kΩ]	ON	OFF	ON	ON	OFF	ON	OFF
Response Time	VRL=5[V]	ON	OFF	ON	ON	OFF	ON	OFF

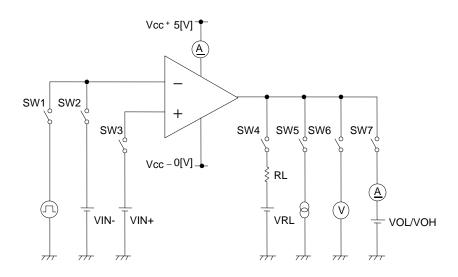


Fig.89 Measurement Circuit 2 (each Comparator)

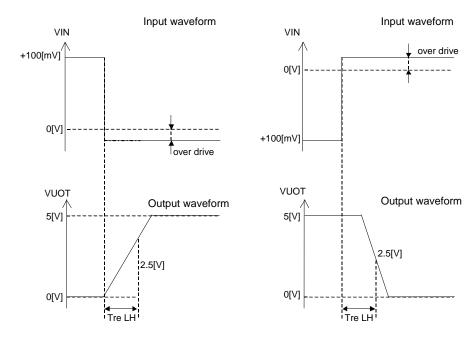


Fig.90 Response Time

Description of Electrical Characteristics

Described below are descriptions of the relevant electrical terms.

Please note that item names, symbols, and their meanings may differ from those on another manufacturer's documents.

1. Absolute maximum ratings

The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of electrical characteristics or damage to the part itself as well as peripheral components.

1.1 Power supply voltage (Vcc⁺/Vcc⁻)

Expresses the maximum voltage that can be supplied between the positive and negative power supply terminals without causing deterioration of the electrical characteristics or destruction of the internal circuitry.

1.2 Differential input voltage (VID)

Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC.

1.3 Input common-mode voltage range (VICM)

Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration of the electrical characteristics or damage to the IC itself. Normal operation is not guaranteed within the input common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead.

1.4 Operating temperature range and storage temperature range (Topr, Tstg)

The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics.

1.5 Power dissipation (Pd)

Indicates the power that can be consumed by a particular mounted board at ambient temperature (25°C). For packaged products, Pd is determined by the maximum junction temperature and the thermal resistance.

2. Electric characteristics

2.1 Input offset voltage (VIO)

Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the output voltage to 0V.

2.2 Input offset current (IIO)

Indicates the difference of the input bias current between the non-inverting and inverting terminals.

2.3 Input bias current (IIB)

Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input bias current at the inverting terminal.

2.4 Input common-mode voltage range(VICM)

Indicates the input voltage range under which the IC operates normally.

2.5 Large signal differential voltage gain (AVD)

The amplifying rate (gain) of the output voltage against the voltage difference between the non-inverting and inverting terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage.

AVD = (output voltage fluctuation) / (input offset fluctuation)

2.6 Supply current (ICC)

Indicates the current of the IC itself that flows under specific conditions and during no-load steady state.

2.7 Low level output current (IOL)

Denotes the maximum current that can be output under specific output conditions.

2.8 Low level output voltage (VOL)

Signifies the voltage range that can be output under specific output conditions.

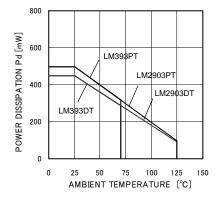
2.9 High level output current (IOH)

Indicates the current that flows into the IC under specific input and output conditions.

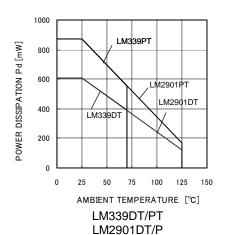
2.10 Response time (Tre)

The interval between the application of input and output conditions.

2.11 Common-mode rejection ratio (CMRR)


Denotes the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation). CMRR = (change in input common-mode voltage) / (input offset fluctuation)

2.12 Power supply rejection ratio (PSRR)


Signifies the ratio of fluctuation of the input offset voltage when the supply voltage is changed (DC fluctuation). PSRR = (change in power supply voltage) / (input offset fluctuation)

SIGNATURE SERIES LM2903/2901/393/339 family

Derating Curve

LM393DT/PT/WDT/WPT LM2903DT/PT

Power Dissipation

Package	Pd[W]	θ ja [°C/W]
SO package8 (*8)	450	3.6
TSSOP8 (*6)	500	4.0

 θ ja = (Tj-Ta)/Pd[°C/W]

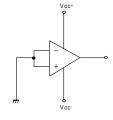
Package	Pd[W]	θ ja [°C/W]
SO package14	610	4.9
TSSOP14	870	7.0

 $\theta ja = (Tj-Ta)/Pd[^{\circ}C/W]$

Fig.91 Derating Curve

Precautions

1) Unused circuits


When there are unused circuits it is recommended that they be connected as in Fig.92, setting the non-inverting input terminal to a potential within the in-phase input voltage range (VICM).

2) Input terminal voltage

Power Dissipation

Applying Vcc + 36[V] to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. However, this does not ensure normal circuit operation.

Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics.

Fig.92 Disable circuit example

3) Power supply (single / dual)

The op-amp operates when the specified voltage supplied is between Vcc⁺ and Vcc . Therefore, the single supply op-amp can be used as a dual supply op-amp as well.

4) Power dissipation Pd

Using the unit in excess of the rated power dissipation may cause deterioration in the electrical characteristics due to a rise in chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating curves for more information.

5) Short-circuit between pins and erroneous mounting

Incorrect mounting may damage the IC. In addition, the presence of foreign particles between the outputs, the output and the power supply, or the output and Vcc may result in IC destruction.

6) Terminal short-circuits

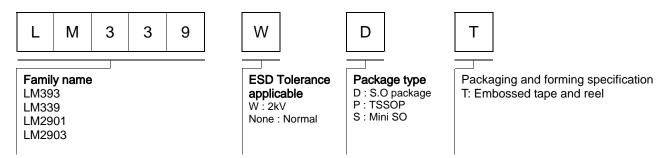
When output and Vcc⁺ terminals are shorted, excessive output current may flow, resulting in undue heat generation and, subsequently, destruction.

7) Operation in a strong electromagnetic field

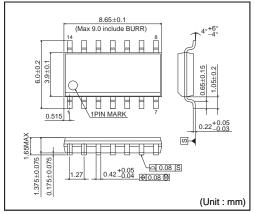
Operation in a strong electromagnetic field may cause malfunctions.

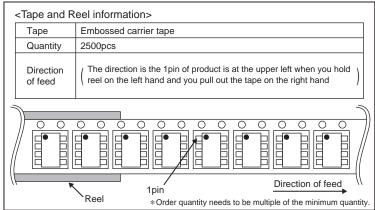
8) Radiation

This IC is not designed to withstand radiation.

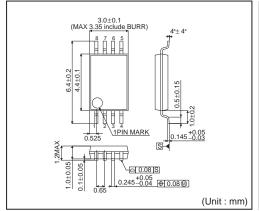

9) IC handing

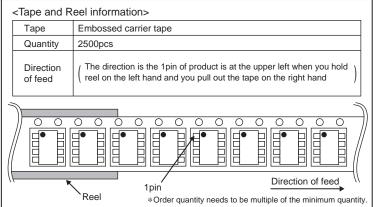
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical characteristics due to piezoelectric (piezo) effects.

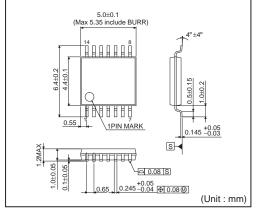

10) Board inspection

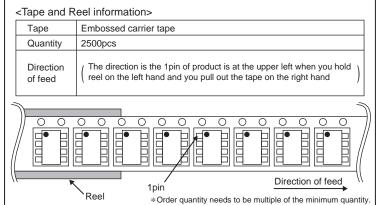

Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly process as well as during transportation and storage.

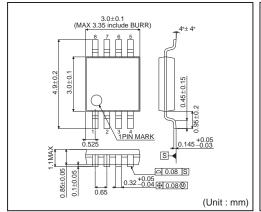
Ordering part number

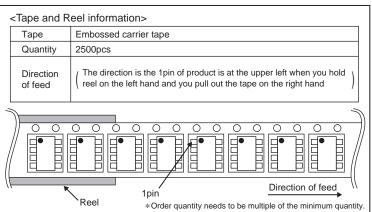



S.O package14




TSSOP8




TSSOP14

Mini SO8

Notice

Precaution on using ROHM Products

Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

(Note1) Medical Equipment Classification of the Specific Applications

JAPAN	USA	EU	CHINA	
CLASSⅢ	CLASSⅢ	CLASS II b	CLASSIII	
CLASSIV	CLASSIII	CLASSⅢ	CLASSIII	

- 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - [f] Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

QR code printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export.

Precaution Regarding Intellectual Property Rights

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.:
- 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document.

Other Precaution

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

- 1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this docume nt is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sale s representative.
- 3. The information contained in this doc ument is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Notice – WE © 2014 ROHM Co., Ltd. All rights reserved. Rev.001

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ROHM Semiconductor:

LM393DT LM2903DT LM393WDT LM393WPT