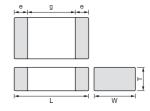
Chip Monolithic Ceramic Capacitors

High Frequency GQM Series


■ Features

- 1. HiQ and low ESR at VHF, UHF, Microwave
- 2. Feature improvement, low power consumption for mobile telecommunication. (Base station, terminal,

■ Applications

High frequency circuit (Mobile telecommunication, etc.)

Part Number	Dimensions (mm)							
Farcivumber	L	W	Т	е	g min.			
GQM187	1.6±0.15	0.8±0.15	0.7 ±0.1	0.2 to 0.5	0.5			
GQM188	1.6±0.1	0.8±0.1	0.8±0.1	0.2 to 0.5	0.5			
GQM219 (50,100V)		1.25 ±0.1		0.2 to 0.7	0.7			
GQM219 (250V)	2.0±0.15	1.25 ±0.15	0.85 ±0.15	0.2 to 0.7	0.7			
GQM22M	2.8±0.5	2.8±0.4	1.15±0.2	O. 3 m in .	1.0			

Capacitance Table

Temperature Con 7 ex.7: T				e CC	G (5C) Cha	racter
LxW		1.6x0.8		2	.0x1.2	5	2.8x2.8
[mm]		(18) <0603			(21) <0805>		(22) <1111>
Rated Voltage	250	100	50	250	100	50	500
Capacitance [Vdc]	(2E)	(2A)	(1H)	(2E)	(2A)	(1H)	(2H)
0.10pF(R10)	7	()	()	, ,	()	()	,
0.20pF(R20)	7			! !			
0.30pF(R30)	7						
0.40pF(R40)	7			! !			
0.50pF(R50)	7	8		9	9		М
0.75pF(R75)	7	8		9	9		M
1.0pF(1R0)	7	8		9	9		M
1.1pF(1R1)	7	8		9	9		M
1.2pF(1R2)	7	8		9	9		M
1.3pF(1R3)	7	8		9	9		M
1.5pF(1R5)	7	8		9	9		M
1.6pF(1R6)	7	8		9	9		M
1.8pF(1R8)	7	8		9	9		M
2.0pF(2R0)	7	8		9	9		M
2.2pF(2R2)	7	8		9	9		M
2.4pF(2R4)	7	8		9	9		M
2.7pF(2R7)	7	8		9	9		M
3.0pF(3R0)	7	8		9	9		M
3.3pF(3R3)	7	8		9	9		M
3.6pF(3R6)	7	8		9	9		M
3.9pF(3R9)	7	8		9	9		M
4.0pF(4R0)	7	8		9	9		M
4.3pF(4R3)	7	8		9	9		M
4.7pF(4R7)	7	8		9	9		M
5.0pF(5R0)	7	8		9	9		M
5.1pF(5R1)	7	8		9	9		M
5.6pF(5R6)	7	8		9	9		M
6.0pF(6R0)	7	8		9	9		M
6.2pF(6R2)	7	8		9	9		M
6.8pF(6R8)	7	8		9	9		M
7.0pF(7R0)	7	0	8	9	9		M
7.5pF(7R5)	7		8	9	9		M
8.0pF(8R0)	7		8	9	9		M
8.2pF(8R2)	7		8	9	9		M
9.0pF(9R0)	7		8	9	9		M
9.1pF(9R1)	7		8	9	9		M
10pF(100)	7		8	9	9		M
11pF(110)	7		8	9	9		M
12pF(120)	7		8	9	9		M
13pF(130)	7		8	9	9		M
15pF(150)	7		8	9	9		M
16pF(160)	7		8	9	9		M
18pF(180)	7	-	8	9	9		M
20pF(200)	7	-	8	9		9	M
22pF(220)	7		8	9		9	M
24pF(240)	7		8	9		9	M
27pF(270)	7		8	9		9	M
30pF(300)	7		8	9		9	M
33pF(330)	7	-	8	9		9	M
- Jopi (JJU)							

LxW [mm]		1.6x0.8 (18) <0603>			2.0x1.25 (21) <0805>		
Rated Voltage Capacitance [Vdc]	250 (2E)	100 (2A)	50 (1H)	250 (2E)	100 (2A)	50 (1H)	500 (2H)
36pF(360)	7		8	9		9	М
39pF(390)	7		8	9		9	M
43pF(430)	7		8	9		9	М
47pF(470)	7		8	9		9	М
51pF(510)			8	9		9	M
56pF(560)			8	9		9	М
62pF(620)			8	9		9	М
68pF(680)			8	9		9	М
75pF(750)			8	9		9	M
82pF(820)			8	9		9	М
91pF(910)			8	9		9	М
100pF(101)			8	9		9	М

LxW [mm]		1.6x 0.8(1	8)<0603>
Rated Volt. [Vdc]	250 (2E)	100 (2A)
Capacitance	Tolerance	Part N	umber
0.10p F (R10)	±0.1p F (B)	GQM1875C2ER10BB12D	
O. 2Op F (R20)	±0.1p F (B)	GQM1875C2ER20BB12D	
O. 3Op F (R30)	±0.1p F (B)	GQM1875C2ER30BB12D	
	±0.25p F (C)	GQM1875C2ER30CB12D	
O. 4Op F (R40)	±0.1p F (B)	GQM1875C2ER40BB12D	
	±0.25p F (C)	GQM1875C2ER40CB12D	
0.50p F (R50)	±0.1p F (B)	GQM1875C2ER50BB12D	GQM1885C2AR50BB01D
	±0.25p F (C)	GQM1875C2ER50CB12D	GQM1885C2AR50CB01D
O. 75p F (R75)	±0.1p F (B)	GQM1875C2ER75BB12D	GQM1885C2AR75BB01D
	±0.25p F (C)	GQM1875C2ER75CB12D	GQM1885C2AR75CB01D
1. Op F (1R0)	±0.1p F (B)	GQM1875C2E1R0BB12D	GQM1885C2A1R0BB01D
	±0.25p F (C)	GQM1875C2E1R0CB12D	GQM1885C2A1R0CB01D
1.1p F (1R1)	±0.1p F (B)	GQM1875C2E1R1BB12D	GQM1885C2A1R1BB01D
	±0.25p F (C)	GQM1875C2E1R1BB12B	GQM1885C2A1R1CB01D
1. 2p F (1R2)	±0.1p F (B)	GQM1875C2E1R2BB12D	GQM1885C2A1R2BB01D
1.2р1 (ТК2)	±0.25p F (C)	GQM1875C2E1R2CB12D	GQM1885C2A1R2CB01D
1. 3p F (1R3)			
1. Sp F (1K3)	±0.1p F (B)	GQM1875C2E1R3BB12D	GQM1885C2A1R3BB01D
1 5- 5 (105)	±0.25p F (C)	GQM1875C2E1R3CB12D	GQM1885C2A1R3CB01D
1.5p F (1R5)	±0.1p F (B)	GQM1875C2E1R5BB12D	GQM1885C2A1R5BB01D
4.0.5(450)	±0.25p F (C)	GQM1875C2E1R5CB12D	GQM1885C2A1R5CB01D
1.6p F (1R6)	±0.1p F (B)	GQM1875C2E1R6BB12D	GQM1885C2A1R6BB01D
	±0.25p F (C)	GQM1875C2E1R6CB12D	GQM1885C2A1R6CB01D
1.8pF(1R8)	±0.1p F (B)	GQM1875C2E1R8BB12D	GQM1885C2A1R8BB01D
	±0.25p F (C)	GQM1875C2E1R8CB12D	GQM1885C2A1R8CB01D
2.0pF(2R0)	±0.1p F (B)	GQM1875C2E2R0BB12D	GQM1885C2A2R0BB01D
	±0.25p F (C)	GQM1875C2E2R0CB12D	GQM1885C2A2R0CB01D
2.2pF (2R2)	±0.1p F (B)	GQM1875C2E2R2BB12D	GQM1885C2A2R2BB01D
	±0.25p F (C)	GQM1875C2E2R2CB12D	GQM1885C2A2R2CB01D
2.4p F (2R4)	±0.1p F (B)	GQM1875C2E2R4BB12D	GQM1885C2A2R4BB01D
	±0.25p F (C)	GQM1875C2E2R4CB12D	GQM1885C2A2R4CB01D
2.7p F (2R7)	±0.1p F (B)	GQM1875C2E2R7BB12D	GQM1885C2A2R7BB01D
	±0.25p F (C)	GQM1875C2E2R7CB12D	GQM1885C2A2R7CB01D
3. Op F (3R0)	±0.1p F (B)	GQM1875C2E3R0BB12D	GQM1885C2A3R0BB01D
	±0.25p F (C)	GQM1875C2E3R0CB12D	GQM1885C2A3R0CB01D
3.3p F (3R3)	±0.1p F (B)	GQM1875C2E3R3BB12D	GQM1885C2A3R3BB01D
	±0.25p F (C)	GQM1875C2E3R3CB12D	GQM1885C2A3R3CB01D
3.6p F (3R6)	±0.1p F (B)	GQM1875C2E3R6BB12D	GQM1885C2A3R6BB01D
	±0.25p F (C)	GQM1875C2E3R6CB12D	GQM1885C2A3R6CB01D
3.9p F (3R9)	±0.1p F (B)	GQM1875C2E3R9BB12D	GQM1885C2A3R9BB01D
	±0.25p F (C)	GQM1875C2E3R9CB12D	GQM1885C2A3R9CB01D
4. Op F (4R0)	±0.1p F (B)	GQM1875C2E4R0BB12D	GQM1885C2A4R0BB01D
	±0.25p F (C)	GQM1875C2E4R0CB12D	GQM1885C2A4R0CB01D
4. 3p F (4R3)	±0.1p F (B)	GQM1875C2E4R3BB12D	GQM1885C2A4R3BB01D
r \ -7	±0.25p F (C)	GQM1875C2E4R3CB12D	GQM1885C2A4R3CB01D
4. 7p F (4R7)	±0.1p F (B)	GQM1875C2E4R7BB12D	GQM1885C2A4R7BB01D
	±0.25p F (C)	GQM1875C2E4R7CB12D	GQM1885C2A4R7CB01D
5. Op F (5R0)	±0.1p F (B)	GQM1875C2E5R0BB12D	GQM1885C2A5R0BB01D
J. (J. (J. (J. (J. (J. (J. (J. (J. (J. (±0.25p F (C)	GQM1875C2E5R0CB12D	GQM1885C2A5R0CB01D
	_0.241 (b)	3 Giii 101 3 3 2 L 31 10 D 12 D	24m 100002A31(00D01D

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

(Part Number) GQ М 18 7 5C 2E R10 B **3 4 5** 6

●Product ID 2Series 5Temperature Characteristics 8 Capacitance Tolerance

3Dimensions (LxW) 6Rated Voltage 9Individual Specification Code

4Dimension (T) 7 Capacitance **®**Packaging

Packaging Code in Part Number shows STD 180mm Reel Taping

LxW [mm]			1.6x 0.8(18)<0603>	
Rated Volt. [Vdc]		250 (2E)	100 (2A)	50(1 H)
Capacitance	Tolerance		Part Number	
5.1p F (5R1)	±0.25p F (C)	GQM1875C2E5R1CB12D	GQM1885C2A5R1CB01D	
	±0.5p F (D)	GQM1875C2E5R1DB12D	GQM1885C2A5R1DB01D	
5.6p F (5R6)	±0.25p F (C)	GQM1875C2E5R6CB12D	GQM1885C2A5R6CB01D	
	±0.5p F (D)	GQM1875C2E5R6DB12D	GQM1885C2A5R6DB01D	
6. Op F (6R0)	±0.25p F (C)	GQM1875C2E6R0CB12D	GQM1885C2A6R0CB01D	
	±0.5p F (D)	GQM1875C2E6R0DB12D	GQM1885C2A6R0DB01D	
6.2p F (6R2)	±0.25p F (C)	GQM1875C2E6R2CB12D	GQM1885C2A6R2CB01D	
	±0.5p F (D)	GQM1875C2E6R2DB12D	GQM1885C2A6R2DB01D	
6.8p F (6R8)	±0.25p F (C)	GQM1875C2E6R8CB12D	GQM1885C2A6R8CB01D	
	±0.5p F (D)	GQM1875C2E6R8DB12D	GQM1885C2A6R8DB01D	
7. Op F (7R0)	±0.25p F (C)	GQM1875C2E7R0CB12D		GQM1885C1H7R0CB01D
	±0.5p F (D)	GQM1875C2E7R0DB12D		GQM1885C1H7R0DB01D
7.5p F (7R5)	±0.25p F (C)	GQM1875C2E7R5CB12D		GQM1885C1H7R5CB01D
	±0.5p F (D)	GQM1875C2E7R5DB12D		GQM1885C1H7R5DB01D
8. Op F (8R0)	±0.25p F (C)	GQM1875C2E8R0CB12D		GQM1885C1H8R0CB01D
	±0.5p F (D)	GQM1875C2E8R0DB12D		GQM1885C1H8R0DB01D
8.2pF(8R2)	±0.25p F (C)	GQM1875C2E8R2CB12D		GQM1885C1H8R2CB01D
	±0.5p F (D)	GQM1875C2E8R2DB12D		GQM1885C1H8R2DB01D
9. Op F (9R0)	±0.25p F (C)	GQM1875C2E9R0CB12D		GQM1885C1H9R0CB01D
	±0.5p F (D)	GQM1875C2E9R0DB12D		GQM1885C1H9R0DB01D
9.1p F (9R1)	±0.25p F (C)	GQM1875C2E9R1CB12D		GQM1885C1H9R1CB01D
	±0.5p F (D)	GQM1875C2E9R1DB12D		GQM1885C1H9R1DB01D
1 Op F (100)	±2% (G)	GQM1875C2E100GB12D		GQM1885C1H100GB01D
. , ,	±5% (J)	GQM1875C2E100JB12D		GQM1885C1H100JB01D
11p F (110)	±2% (G)	GQM1875C2E110GB12D		GQM1885C1H110GB01D
1 (-/	±5% (J)	GQM1875C2E110JB12D		GQM1885C1H110JB01D
12pF(120)	±2% (G)	GQM1875C2E120GB12D		GQM1885C1H120GB01D
. 4 . (.=9)	±5% (J)	GQM1875C2E120JB12D		GQM1885C1H120JB01D
13p F (130)	±2% (G)	GQM1875C2E130GB12D		GQM1885C1H130GB01D
(۱۵۵)	±5% (J)	GQM1875C2E130JB12D		GQM1885C1H130JB01D
15p F (150)	±2% (G)	GQM1875C2E150GB12D		GQM1885C1H150GB01D
	±5% (J)	GQM1875C2E150JB12D		GQM1885C1H150JB01D
16p F (160)	±2% (G)	GQM1875C2E160GB12D		GQM1885C1H160GB01D
141 (100)	±5% (J)	GQM1875C2E160JB12D		GQM1885C1H160JB01D
18p F (180)	±2% (G)	GQM1875C2E180GB12D		GQM1885C1H180GB01D
141 (100)	±5% (J)	GQM1875C2E180JB12D		GQM1885C1H180JB01D
2Op F (200)	±2% (G)	GQM1875C2E200GB12D		GQM1885C1H200GB01D
291 (200)	±5% (J)	GQM1875C2E200JB12D		GQM1885C1H200JB01D
22p F (220)				
22pr (220)	±2% (G) 	GQM1875C2E220GB12D		GQM1885C1H220GB01D GQM1885C1H220JB01D
245 E /240\	±5% (J)	GQM1875C2E220JB12D		
24p F (240)	±2% (G)	GQM1875C2E240GB12D		GQM1885C1H240GB01D
07. F (07.0)	±5% (J)	GQM1875C2E240JB12D		GQM1885C1H240JB01D
27p F (270)	±2% (G)	GQM1875C2E270GB12D		GQM1885C1H270GB01D
00 5 /20 5	±5% (J)	GQM1875C2E270JB12D		GQM1885C1H270JB01D
30p F (300)	±2% (G)	GQM1875C2E300GB12D		GQM1885C1H300GB01D
	±5% (J)	GQM1875C2E300JB12D		GQM1885C1H300JB01D

LxW [mm]		1.6x 0.8(1	8)<0603>
Rated Volt. [Vdc]	250 (2E)	50(1 H)
Capacitance	Tolerance	Part N	umber
33p F (330)	±2% (G)	GQM1875C2E330GB12D	GQM1885C1H330GB01D
	±5% (J)	GQM1875C2E330JB12D	GQM1885C1H330JB01D
36p F (360)	±2% (G)	GQM1875C2E360GB12D	GQM1885C1H360GB01D
	±5% (J)	GQM1875C2E360JB12D	GQM1885C1H360JB01D
39p F (390)	±2% (G)	GQM1875C2E390GB12D	GQM1885C1H390GB01D
	±5% (J)	GQM1875C2E390JB12D	GQM1885C1H390JB01D
43p F (430)	±2% (G)	GQM1875C2E430GB12D	GQM1885C1H430GB01D
	±5% (J)	GQM1875C2E430JB12D	GQM1885C1H430JB01D
47p F (470)	±2% (G)	GQM1875C2E470GB12D	GQM1885C1H470GB01D
	±5% (J)	GQM1875C2E470JB12D	GQM1885C1H470JB01D
51p F (510)	±2% (G)		GQM1885C1H510GB01D
	±5% (J)		GQM1885C1H510JB01D
56p F (560)	±2% (G)		GQM1885C1H560GB01D
	±5% (J)		GQM1885C1H560JB01D
62p F (620)	±2% (G)		GQM1885C1H620GB01D
	±5% (J)		GQM1885C1H620JB01D
68p F (680)	±2% (G)		GQM1885C1H680GB01D
	±5% (J)		GQM1885C1H680JB01D
75p F (750)	±2% (G)		GQM1885C1H750GB01D
• • •	±5% (J)		GQM1885C1H750JB01D
82p F (820)	±2% (G)		GQM1885C1H820GB01D
1 (/	±5% (J)		GQM1885C1H820JB01D
91p F (910)	±2% (G)		GQM1885C1H910GB01D
- [(3-0)	±5% (J)		GQM1885C1H910JB01D
100p F (101)	±2% (G)		GQM1885C1H101GB01D
. 3 9 . (10 1)	±5% (J)		GQM1885C1H101JB01D
	±0/0 (0)		

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

4Dimension (T) 7 Capacitance **®**Packaging

LxW [mm]		2.0x 1.250	21)<0805>	2.8x 2.8(22)<1111>
Rated Volt. [Vdc	 1	250 (2E)	100(2A)	500 (2H)
Capacitance	Tolerance		Part Number	
0.50p F (R50)	±0.1p F (B)	GQM2195C2ER50BB12D	GQM2195C2AR50BB01D	GQM22M5C2HR50BB01L
,	±0.25p F (C)	GQM2195C2ER50CB12D	GQM2195C2AR50CB01D	GQM22M5C2HR50CB01L
O. 75p F (R75)	±0.1p F (B)	GQM2195C2ER75BB12D	GQM2195C2AR75BB01D	GQM22M5C2HR75BB01L
/	±0.25p F (C)	GQM2195C2ER75CB12D	GQM2195C2AR75CB01D	GQM22M5C2HR75CB01L
1. Op F (1R0)	±0.1p F (B)	GQM2195C2E1R0BB12D	GQM2195C2A1R0BB01D	GQM22M5C2H1R0BB01L
. , ,	±0.25p F (C)	GQM2195C2E1R0CB12D	GQM2195C2A1R0CB01D	GQM22M5C2H1R0CB01L
1.1pF(1R1)	±0.1p F (B)	GQM2195C2E1R1BB12D	GQM2195C2A1R1BB01D	GQM22M5C2H1R1BB01L
. , ,	±0.25p F (C)	GQM2195C2E1R1CB12D	GQM2195C2A1R1CB01D	GQM22M5C2H1R1CB01L
1. 2p F (1R2)	±0.1p F (B)	GQM2195C2E1R2BB12D	GQM2195C2A1R2BB01D	GQM22M5C2H1R2BB01L
. , ,	±0.25p F (C)	GQM2195C2E1R2CB12D	GQM2195C2A1R2CB01D	GQM22M5C2H1R2CB01L
1.3p F (1R3)	±0.1p F (B)	GQM2195C2E1R3BB12D	GQM2195C2A1R3BB01D	GQM22M5C2H1R3BB01L
, , ,	±0.25p F (C)	GQM2195C2E1R3CB12D	GQM2195C2A1R3CB01D	GQM22M5C2H1R3CB01L
1.5p F (1R5)	±0.1p F (B)	GQM2195C2E1R5BB12D	GQM2195C2A1R5BB01D	GQM22M5C2H1R5BB01L
-1 (-/	±0.25p F (C)	GQM2195C2E1R5CB12D	GQM2195C2A1R5CB01D	GQM22M5C2H1R5CB01L
1.6p F (1R6)	±0.1p F (B)	GQM2195C2E1R6BB12D	GQM2195C2A1R6BB01D	GQM22M5C2H1R6BB01L
-1 (-/	±0.25p F (C)	GQM2195C2E1R6CB12D	GQM2195C2A1R6CB01D	GQM22M5C2H1R6CB01L
1.8p F (1R8)	±0.1p F (B)	GQM2195C2E1R8BB12D	GQM2195C2A1R8BB01D	GQM22M5C2H1R8BB01L
-1 (-/	±0.25p F (C)	GQM2195C2E1R8CB12D	GQM2195C2A1R8CB01D	GQM22M5C2H1R8CB01L
2.Op F (2R0)	±0.1p F (B)	GQM2195C2E2R0BB12D	GQM2195C2A2R0BB01D	GQM22M5C2H2R0BB01L
-1 (-/	±0.25p F (C)	GQM2195C2E2R0CB12D	GQM2195C2A2R0CB01D	GQM22M5C2H2R0CB01L
2.2pF(2R2)	±0.1p F (B)	GQM2195C2E2R2BB12D	GQM2195C2A2R2BB01D	GQM22M5C2H2R2BB01L
, , ,	±0.25p F (C)	GQM2195C2E2R2CB12D	GQM2195C2A2R2CB01D	GQM22M5C2H2R2CB01L
2.4p F (2R4)	±0.1p F (B)	GQM2195C2E2R4BB12D	GQM2195C2A2R4BB01D	GQM22M5C2H2R4BB01L
, , ,	±0.25p F (C)	GQM2195C2E2R4CB12D	GQM2195C2A2R4CB01D	GQM22M5C2H2R4CB01L
2.7p F (2R7)	±0.1p F (B)	GQM2195C2E2R7BB12D	GQM2195C2A2R7BB01D	GQM22M5C2H2R7BB01L
, , ,	±0.25p F (C)	GQM2195C2E2R7CB12D	GQM2195C2A2R7CB01D	GQM22M5C2H2R7CB01L
3. Op F (3R0)	±0.1p F (B)	GQM2195C2E3R0BB12D	GQM2195C2A3R0BB01D	GQM22M5C2H3R0BB01L
, , ,	±0.25p F (C)	GQM2195C2E3R0CB12D	GQM2195C2A3R0CB01D	GQM22M5C2H3R0CB01L
3.3p F (3R3)	±0.1p F (B)	GQM2195C2E3R3BB12D	GQM2195C2A3R3BB01D	GQM22M5C2H3R3BB01L
. , ,	±0.25p F (C)	GQM2195C2E3R3CB12D	GQM2195C2A3R3CB01D	GQM22M5C2H3R3CB01L
3.6p F (3R6)	±0.1p F (B)	GQM2195C2E3R6BB12D	GQM2195C2A3R6BB01D	GQM22M5C2H3R6BB01L
	±0.25p F (C)	GQM2195C2E3R6CB12D	GQM2195C2A3R6CB01D	GQM22M5C2H3R6CB01L
3.9p F (3R9)	±0.1p F (B)	GQM2195C2E3R9BB12D	GQM2195C2A3R9BB01D	GQM22M5C2H3R9BB01L
	±0.25p F (C)	GQM2195C2E3R9CB12D	GQM2195C2A3R9CB01D	GQM22M5C2H3R9CB01L
4. Op F (4R0)	±0.1p F (B)	GQM2195C2E4R0BB12D	GQM2195C2A4R0BB01D	GQM22M5C2H4R0BB01L
	±0.25p F (C)	GQM2195C2E4R0CB12D	GQM2195C2A4R0CB01D	GQM22M5C2H4R0CB01L
4. 3p F (4R3)	±0.1p F (B)	GQM2195C2E4R3BB12D	GQM2195C2A4R3BB01D	GQM22M5C2H4R3BB01L
,	±0.25p F (C)	GQM2195C2E4R3CB12D	GQM2195C2A4R3CB01D	GQM22M5C2H4R3CB01L
4. 7p F (4R7)	±0.1p F (B)	GQM2195C2E4R7BB12D	GQM2195C2A4R7BB01D	GQM22M5C2H4R7BB01L
•	±0.25p F (C)	GQM2195C2E4R7CB12D	GQM2195C2A4R7CB01D	GQM22M5C2H4R7CB01L
5. Op F (5R0)	±0.1p F (B)	GQM2195C2E5R0BB12D	GQM2195C2A5R0BB01D	GQM22M5C2H5R0BB01L
, , ,	±0.25p F (C)	GQM2195C2E5R0CB12D	GQM2195C2A5R0CB01D	GQM22M5C2H5R0CB01L
5.1p F (5R1)	±0.25p F (C)	GQM2195C2E5R1CB12D	GQM2195C2A5R1CB01D	GQM22M5C2H5R1CB01L
/	±0.5p F (D)	GQM2195C2E5R1DB12D	GQM2195C2A5R1DB01D	GQM22M5C2H5R1DB01L
5.6p F (5R6)	±0.25p F (C)	GQM2195C2E5R6CB12D	GQM2195C2A5R6CB01D	GQM22M5C2H5R6CB01L
/	±0.5p F (D)	GQM2195C2E5R6DB12D	GQM2195C2A5R6DB01D	GQM22M5C2H5R6DB01L
6. Op F (6R0)	±0.25p F (C)	GQM2195C2E6R0CB12D	GQM2195C2A6R0CB01D	GQM22M5C2H6R0CB01L
r \ -/	±0.5p F (D)	GQM2195C2E6R0DB12D	GQM2195C2A6R0DB01D	GQM22M5C2H6R0DB01L
The part number of	•		IA [inch] Code	I.

LxW [mm]			2.0x 1.25(21)<0805>		2.8x 2.8(22)<1111>
Rated Volt. [Vdc]	250 (2E)	100 (2A)	50 (1 H)	500 (2H)
Capacitance	Tolerance		Part N	umber	
6.2p F (6R2)	±0.25p F (C)	GQM2195C2E6R2CB12D	GQM2195C2A6R2CB01D		GQM22M5C2H6R2CB01
	±0.5p F (D)	GQM2195C2E6R2DB12D	GQM2195C2A6R2DB01D		GQM22M5C2H6R2DB01
6.8pF (6R8)	±0.25p F (C)	GQM2195C2E6R8CB12D	GQM2195C2A6R8CB01D		GQM22M5C2H6R8CB01
	±0.5p F (D)	GQM2195C2E6R8DB12D	GQM2195C2A6R8DB01D		GQM22M5C2H6R8DB01
7. Op F (7R0)	±0.25p F (C)	GQM2195C2E7R0CB12D	GQM2195C2A7R0CB01D		GQM22M5C2H7R0CB01
	±0.5p F (D)	GQM2195C2E7R0DB12D	GQM2195C2A7R0DB01D		GQM22M5C2H7R0DB01
7.5p F (7R5)	±0.25p F (C)	GQM2195C2E7R5CB12D	GQM2195C2A7R5CB01D		GQM22M5C2H7R5CB01
	±0.5p F (D)	GQM2195C2E7R5DB12D	GQM2195C2A7R5DB01D		GQM22M5C2H7R5DB01
8.Op F (8R0)	±0.25p F (C)	GQM2195C2E8R0CB12D	GQM2195C2A8R0CB01D		GQM22M5C2H8R0CB01
	±0.5p F (D)	GQM2195C2E8R0DB12D	GQM2195C2A8R0DB01D		GQM22M5C2H8R0DB01
8.2p F (8R2)	±0.25p F (C)	GQM2195C2E8R2CB12D	GQM2195C2A8R2CB01D		GQM22M5C2H8R2CB01
	±0.5p F (D)	GQM2195C2E8R2DB12D	GQM2195C2A8R2DB01D		GQM22M5C2H8R2DB01
9. Op F (9R0)	±0.25p F (C)	GQM2195C2E9R0CB12D	GQM2195C2A9R0CB01D		GQM22M5C2H9R0CB01
	±0.5p F (D)	GQM2195C2E9R0DB12D	GQM2195C2A9R0DB01D		GQM22M5C2H9R0DB01
9.1p F (9R1)	±0.25p F (C)	GQM2195C2E9R1CB12D	GQM2195C2A9R1CB01D		GQM22M5C2H9R1CB01
	±0.5p F (D)	GQM2195C2E9R1DB12D	GQM2195C2A9R1DB01D		GQM22M5C2H9R1DB01
10p F (100)	±2% (G)	GQM2195C2E100GB12D	GQM2195C2A100GB01D		GQM22M5C2H100GB01
	±5% (J)	GQM2195C2E100JB12D	GQM2195C2A100JB01D		GQM22M5C2H100JB01
11p F (110)	±2% (G)	GQM2195C2E110GB12D	GQM2195C2A110GB01D		GQM22M5C2H110GB01
	±5% (J)	GQM2195C2E110JB12D	GQM2195C2A110JB01D		GQM22M5C2H110JB01
12pF(120)	±2% (G)	GQM2195C2E120GB12D	GQM2195C2A120GB01D		GQM22M5C2H120GB01
	±5% (J)	GQM2195C2E120JB12D	GQM2195C2A120JB01D		GQM22M5C2H120JB01
13p F (130)	±2% (G)	GQM2195C2E130GB12D	GQM2195C2A130GB01D		GQM22M5C2H130GB01
	±5% (J)	GQM2195C2E130JB12D	GQM2195C2A130JB01D		GQM22M5C2H130JB01
15p F (150)	±2% (G)	GQM2195C2E150GB12D	GQM2195C2A150GB01D		GQM22M5C2H150GB01
	±5% (J)	GQM2195C2E150JB12D	GQM2195C2A150JB01D		GQM22M5C2H150JB01
16p F (160)	±2% (G)	GQM2195C2E160GB12D	GQM2195C2A160GB01D		GQM22M5C2H160GB01
	±5% (J)	GQM2195C2E160JB12D	GQM2195C2A160JB01D		GQM22M5C2H160JB01
18p F (180)	±2% (G)	GQM2195C2E180GB12D	GQM2195C2A180GB01D		GQM22M5C2H180GB01
	±5% (J)	GQM2195C2E180JB12D	GQM2195C2A180JB01D		GQM22M5C2H180JB01
2Op F (200)	±2% (G)	GQM2195C2E200GB12D		GQM2195C1H200GB01D	GQM22M5C2H200GB01
	±5% (J)	GQM2195C2E200JB12D		GQM2195C1H200JB01D	GQM22M5C2H200JB01
22p F (220)	±2% (G)	GQM2195C2E220GB12D		GQM2195C1H220GB01D	GQM22M5C2H220GB01
•	±5% (J)	GQM2195C2E220JB12D		GQM2195C1H220JB01D	GQM22M5C2H220JB01
24p F (240)	±2% (G)	GQM2195C2E240GB12D		GQM2195C1H240GB01D	GQM22M5C2H240GB01
•	±5% (J)	GQM2195C2E240JB12D		GQM2195C1H240JB01D	GQM22M5C2H240JB01
27p F (270)	±2% (G)	GQM2195C2E270GB12D		GQM2195C1H270GB01D	GQM22M5C2H270GB01
. , ,	±5% (J)	GQM2195C2E270JB12D		GQM2195C1H270JB01D	GQM22M5C2H270JB01
3Op F (300)	±2% (G)	GQM2195C2E300GB12D		GQM2195C1H300GB01D	GQM22M5C2H300GB01
. , ,	±5% (J)	GQM2195C2E300JB12D		GQM2195C1H300JB01D	GQM22M5C2H300JB01
33p F (330)	±2% (G)	GQM2195C2E330GB12D		GQM2195C1H330GB01D	GQM22M5C2H330GB01
, , ,	±5% (J)	GQM2195C2E330JB12D		GQM2195C1H330JB01D	GQM22M5C2H330JB01
36p F (360)	±2% (G)	GQM2195C2E360GB12D		GQM2195C1H360GB01D	GQM22M5C2H360GB01
r \ -/	±5% (J)	GQM2195C2E360JB12D		GQM2195C1H360JB01D	GQM22M5C2H360JB01
39p F (390)	±2% (G)	GQM2195C2E390GB12D		GQM2195C1H390GB01D	GQM22M5C2H390GB01
	±5% (J)	GQM2195C2E390JB12D		GQM2195C1H390JB01D	GQM22M5C2H390JB01

●Product ID 2Series 5 Temperature Characteristics 8 Capacitance Tolerance

3Dimensions (LxW) 6Rated Voltage 9Individual Specification Code

4Dimension (T) 7 Capacitance Packaging

Packaging Code in Part Number shows STD 180mm Reel Taping

LxW [mm]		2.0x1.25(2	21)<0805>	2.8x 2.8(22)<1111>
Rated Volt. [Vdc]	250 (2E)	50(1 H)	500 (2H)
Capacitance	Tolerance		Part Number	
43p F (430)	±2% (G)	GQM2195C2E430GB12D	GQM2195C1H430GB01D	GQM22M5C2H430GB01L
	±5% (J)	GQM2195C2E430JB12D	GQM2195C1H430JB01D	GQM22M5C2H430JB01L
47p F (470)	±2% (G)	GQM2195C2E470GB12D	GQM2195C1H470GB01D	GQM22M5C2H470GB01L
	±5% (J)	GQM2195C2E470JB12D	GQM2195C1H470JB01D	GQM22M5C2H470JB01L
51p F (510)	±2% (G)	GQM2195C2E510GB12D	GQM2195C1H510GB01D	GQM22M5C2H510GB01L
	±5% (J)	GQM2195C2E510JB12D	GQM2195C1H510JB01D	GQM22M5C2H510JB01L
56p F (560)	±2% (G)	GQM2195C2E560GB12D	GQM2195C1H560GB01D	GQM22M5C2H560GB01L
	±5% (J)	GQM2195C2E560JB12D	GQM2195C1H560JB01D	GQM22M5C2H560JB01L
62p F (620)	±2% (G)	GQM2195C2E620GB12D	GQM2195C1H620GB01D	GQM22M5C2H620GB01L
	±5% (J)	GQM2195C2E620JB12D	GQM2195C1H620JB01D	GQM22M5C2H620JB01L
68p F (680)	±2% (G)	GQM2195C2E680GB12D	GQM2195C1H680GB01D	GQM22M5C2H680GB01L
	±5% (J)	GQM2195C2E680JB12D	GQM2195C1H680JB01D	GQM22M5C2H680JB01L
75p F (750)	±2% (G)	GQM2195C2E750GB12D	GQM2195C1H750GB01D	GQM22M5C2H750GB01L
	±5% (J)	GQM2195C2E750JB12D	GQM2195C1H750JB01D	GQM22M5C2H750JB01L
82p F (820)	±2% (G)	GQM2195C2E820GB12D	GQM2195C1H820GB01D	GQM22M5C2H820GB01L
	±5% (J)	GQM2195C2E820JB12D	GQM2195C1H820JB01D	GQM22M5C2H820JB01L
91p F (910)	±2% (G)	GQM2195C2E910GB12D	GQM2195C1H910GB01D	GQM22M5C2H910GB01L
	±5% (J)	GQM2195C2E910JB12D	GQM2195C1H910JB01D	GQM22M5C2H910JB01L
100p F (101)	±2% (G)	GQM2195C2E101GB12D	GQM2195C1H101GB01D	GQM22M5C2H101GB01L
	±5% (J)	GQM2195C2E101JB12D	GQM2195C1H101JB01D	GQM22M5C2H101JB01L

GQM Series Specifications and Test Methods

No.	Ite	em	Specifications	Test Method			
1	Operating Temperatu	ıre	–55 to 125℃	Reference Temperature: 25℃			
2	Rated Voltage		See the previous page.		The rated voltage is defined as the maximum voltage that may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or V ^{O-P} , whichever is larger, should be maintained within the rated voltage range.		
3	Appearar	ice	No defects or abnormalities	Visual inspection			
4	Dimensio	n	Within the specified dimensions	Using calipers			
5	Dielectric	Strength	No defects or abnormalities	No failure should be of is applied between the provided the charge/d*GQM187, GQM21	e termination lischarge cu	ns for 1 to 5 se rrent is less th	conds, an 50mA.
6	Insulation	Resistance	More than $10,000 M\Omega$	The insulation resistal voltage not exceeding max. and within 2 min charge/discharge curr	the rated volutes of char	oltage at 25℃ rging, provided	and 75%RH
7	Capacita	nce	Within the specified tolerance	The capacitance/Q sh			at the
8	Q		30pF and over: Q≧1400 30pF and below: Q≧800+20C	Frequency	e shown in the	1±0.1MHz	
			C: Nominal Capacitance (pF)	Voltage		0.5 to 5Vrms	<u> </u>
		Temperature Coefficient	Within the specified tolerance (Table A)	The capacitance change should be measured each specified temp. stage. The temperature coefficient is determined usi			
9	Capacitance Temperature Characteristics	Temperature NATH: 10.000		measured in step 3 as When cycling the temp the capacitance should temperature coefficient. The capacitance drift between the maximur steps 1, 3 and 5 by the Step 1 2 3 4 5	s a reference perature sequ d be within ti and capac is calculatec m and minim e capacitane Ref	e. uentially from s he specified to itance change d by dividing th num measured	teps 1 through 5 lerance for the as in Table A. e differences values in the p 3.
			No removal of the terminations or other defect should occur.	Solder the capacitor to	the test iia (alass enovy ho	ard) shown in
10	Adhesive Strength of Termination		esive Strength		solder. Then 1 sec. De done eithe Duld be cond	er with an iron of lucted with care ects such as he are based on the are b	rce in parallel or using the e so that the
		Appearance	No defects or abnormalities	Solder the capacitor to			ooard) in the
				same manner and un	der the same	e conditions as	s (10).
11	Vibration Resistance Q		on 30pF and over: Q≧1400 ance 30pF and below: O>800+20C		The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of		

Continued on the following page.

This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).

C: Nominal Capacitance (pF)

GQM Series Specifications and Test Methods

Continued from the preceding page **Specifications** Test Method Item No defects or abnormalities. Solder the capacitor on the test jig (glass epoxy board) shown Appearance in Fig. 2 using a eutectic solder Capacitance Within $\pm 5\%$ or ± 0.5 pF Then apply a force in the direction shown in Fig. 3. Change (whichever is larger) The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Pressurizing speed: 1.0r I Pressurize 12 Deflection t: 1.6mm Flexure : ≦1 Type a C GOM18 3.0 1.0 1.2 GQM21 1.2 4.0 1.65 45 GQM22 2.2 5.0 2.9 (in mm) Fig. 3 Fig. 2 Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at Solderability of 75% of the terminations are to be soldered evenly 80 to 120℃ for 10 to 30 seconds. After preheating, immerse in 13 Termination and continuously. eutectic solder solution for 2±0.5 seconds at 230±5℃ or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C. The measured and observed characteristics should satisfy the specifications in the following table. **Appearance** No defects or abnormalities Capacitance Within $\pm 2.5\%$ or ± 0.25 pF (whichever is larger) Change Preheat the capacitor at 120 to 150℃ for 1 minute. Immerse the Resistance capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution 30pF and over: Q≥1400 14 to Soldering at 270±5℃ for 10±0.5 seconds. Let sit at room temperature for 30pF and below: Q≥800+20C Heat Q 24±2 hours, then measure. C: Nominal Capacitance (pF) I.R. More than $10,000M\Omega$ Dielectric No defects Strength The measured and observed characteristics should satisfy the specifications in the following table Fix the capacitor to the supporting jig in the same manner and Appearance No defects or abnormalities. under the same conditions as (10). Within $\pm 2.5\%$ or ± 0.25 pF Capacitance Perform the five cycles according to the four heat treatments Change (whichever is larger) listed in the following table. Let sit for 24±2 hours at room temperature, then measure Temperature 30pF and over: Q≥1400 15 Cycle 30pF and below: Q≥800+20C Step Q

C: Nominal Capacitance (pF)

specifications in the following table

The measured and observed characteristics should satisfy the

More than $10,000M\Omega$

Within $\pm 5\%$ or ± 0.5 pF

C: Nominal Capacitance (pF)

(whichever is larger)

More than $1,000M\Omega$

No defects.

I.R.

Dielectric

Strength

Appearance

Capacitance

Change

Q

I.R

Humidity

State

16 Steady

Min. Operating Room Max. Operating Room Temp. (℃) Temp. +0/-3 Temp. +3/-0 Temp. Temp. Time (min.) 30±3 2 to 3 30 ± 3 2 to 3

No defects or abnormalities. Set the capacitor at 40±2℃ and in 90 to 95% humidity for 500±12 hours 30pF and over: Q≧350 Remove and set for 24±2 hours at room temperature, then 10pF and over, 30pF and below: Q≧275+5C/2 measure 10pF and below: Q≥200+10C

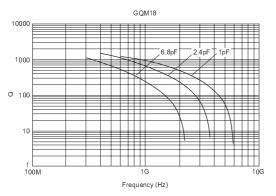
Continued on the following page.

GQM Series Specifications and Test Methods

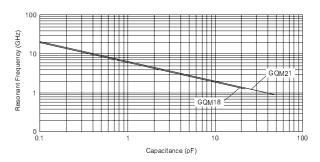
Continued from the preceding page

No.	. Item		Specifications	Test Method		
			The measured and observed characteristics should satisfy the specifications in the following table.			
		Appearance	No defects or abnormalities.			
17	Humidity	Capacitance Change	Within ±7.5% or ±0.75pF (whichever is larger)	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours at room		
17	Load	Q	30pF and over. Q≥200 30pF and below: Q≥100+10C/3	temperature then measure. The charge/discharge current is less than 50mA.		
			C: Nominal Capacitance (pF)	_		
		I.R.	More than 500MΩ			
		The measured and observed characteristics should specifications in the following table.				
		Appearance	No defects or abnormalities.			
	High	Capacitance Change	Within ±3% or ±0.3pF (whichever is larger)	Apply 200%* of the rated voltage for 1000±12 hours at the maximum operating temperature ±3℃.		
18	Temperature Load	Q	30pF and over: Q≧350 10pF and over, 30pF and below: Q≧275+5C/2 10pF and below: Q≧200+10C	Set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. *GQM22: 150% of the rated voltage		
			C: Nominal Capacitance (pF)			
		I.R.	More than 1,000M Ω			

Table A


	Naminal Values		Capacitance Change from 25°C (%)						
Char.	Nominal Values (ppm/℃)*1		−55°C		−30 °C		−10 °C		
	ψμιί/Ο)*1	Max.	Min.	Max.	Min.	Max.	Min.		
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11		

^{*1:} Nominal values denote the temperature coefficient within a range of 25 to 125°C.



GQM Series Data

■ Q - Frequency Characteristics

■ Resonant Frequency - Capacitance

