

Messrs.

Specification No.: JEMCG0-002637

Product Specification

Issued Date:

9 Feb. 2009

Part Description:

Chip Monolithic Ceramic Capacitor

Customer Part No.:

MURATA Part No.: GRM Series (Temperature Compensating Type)

Technical Dept.

Prepared by

Hirofumi SHIRAKAWA

Product Engineering Department, Monolithic Ceramic Capacitor Group

Fukui Murata MFG. Co., Ltd.

Representative

Iasahiro TANBO

CHIP MONOLITHIC CERAMIC CAPACITOR GRM SERIES

1.SCOPE

This product specification is applied to CHIP MONOLITHIC CERAMIC CAPACITOR used for General Electronic equipment.

2.MURATA PART NO. SYSTEM

2.1 NEW PART NO.

(EX.)	GRM	188	R7	1H	102	K		D
·	①	2	3	4	(5)	6	Ø	8

①Type

: According to 3.1

2 Dimensions

: According to 3.1

③Temperature Characteristics

: According to 3.2

: According to 3.3

⑤Nominal Capacitance

: According to 3.4

© Capacitance Tolerance

: According to 3.5

⑦ Murata's Control

: Murata's Control Code

® Packaging Code

: According to 3.6

3.TYPE

3.1 TYPE & DIMENSIONS

GRM: Tin plated

		,			(Unit : mm)	
TYF	E	L	W	Т	е	g	
GRM033		0.6+/-0.03	0.3+/-0.03	0.3+/-0.03	0.1 ~ 0.2	0.2 min.	
GRM155		1.0+/-0.05	0.5+/-0.05	0.5+/-0.05	0.15 ~ 0.35	0.3 min.	
GRM18	5	1.6+/-0.1	0.8 +/-0.1	0.5+0/-0.1	0.2 ~ 0.5	0.5 min.	
CHINITO	8	1.0+7-0.1	0.0 +/-0.1	0.8+/-0.1	0.2 - 0.5	0.0 111111.	
	6			0.6+/-0.1			
GRM21	9	2.0+/-0.1	1.25+/-0.1	0.85+/-0.1	0.2 ~ 0.7	0.7 min.	
GHIVIZI	Α	2.0+/-0.1	1.234/-0.1	1.0+0/-0.2	0.2 ~ 0.7	0.7 mm.	
	В			1.25+/-0.1	- 1		
	6			0.6+/-0.1			
GRM31	9	3.2+/-0.15	1.6 +/-0.15	0.85+/-0.1	0.3 ~ 0.8	1.5 min.	
GHIVIƏT	М			1.15+/-0.1	0.3 ~ 0.8		
	С	3.2+/-0.2	1.6 +/-0.2	1.6+/-0.2			
	9			0.85+/-0.1			
***************************************	М			1.15+/-0.1			
	N			1.35+/-0.15		1.0 min.	
GRM32	С	3.2+/-0.3	2.5 +/-0.2	1.6+/-0.2	0.3 min.		
	R			1.8+/-0.2			
	D			2.0+/-0.2			
	E			2.5+/-0.2		**************************************	
	N			1.35+/-0.15			
	С			1.6+/-0.2			
GRM43	R	4.5+/-0.4	3.2 +/-0.3	1.8+/-0.2	0.3 min.	2.0 min	
	D			2.0+/-0.2			
	E			2.5+/-0.2			
	N			1.35+/-0.15			
	С			1.6+/-0.2			
GRM55	R	5.7+/-0.4	5.0 +/-0.4	1.8+/-0.2	0.3 min.	2.0 min.	
	D			2.0+/-0.2			
	E			2.5+/-0.2			

- 1.Thickness dimensions(T): According to appendix.
- 2.GRM18 Series Bulk case packaging is L:1.6+/-0.07mm, W/T:0.8+/-0.07mm.
- 3.GRM21 Series R6 0J 335/475K is L:2.0+/-0.15mm, W/T:1.25+/-0.15mm.
- 4.GRM31 Series R7 1C 105/155/225K, R6 0J 475K, GRM319R61A335K are L:3.2+/-0.2mm, W:1.6+/-0.2 mm.
- 5.GRM31 Series R7 1E 225K, R7 2A 474/684K are L:3.2+/-0.2mm, W:1.6+/-0.2mm, T:1.15+/-0.15mm.

3.2 TEMPERATURE CHARACTERISTICS

(1)Temperature Compensating Type

<u>, , , , , , , , , , , , , , , , , , , </u>	(1)101111011111111111111111111111111111									
Code	Temp. Range	Temp. coeff.(ppm/°C)								
5C	EE 40E00	0 +/-30								
6C	-55 ~125°C	0 +/-60								
6P		-150 +/-60								
6R		-220 +/-60								
6S	-55 ~ 85°C	-330 +/-60								
6T		-470 +/-60								
7U		-750 +/-120								
1X	20 ~ 85°C	+350 ~ -1000								

(2) High Dielectric Constant Type

Code	Cap. Change(Within%)	Temp. Range	Standard Temp.
			Otaridara romp.
R7	+/-15	-55 ~ 125°C	
R6	+/-15	-55 ~ 85°C	25°C
F5	+22/-82	-30 ~ 85°C	

3.3 DC RATED VOLTAGE

Code	0J	1A	1C	1E	1H	2A
DC Rated voltage	6.3V	10V	16V	25V	50V	100V

3.4 NOMINAL CAPACITANCE

Nominal Capacitance shall be expressed by three digits. The first two digits represents significant figures. The last specifies the number of zero to follow. The letter R is used as the decimal point. According to appendix.

(EX.)

,	
Code	Capacitance
R50	0.5pF
5R0	5.0pF
220	22pF
221	220pF

3.5 CAPACITANCE TOLERANCE

Code	Type	Temperature Characteristics	Capacita	ance Tolerance	Capacitance Step
С	Temperature		1000	+/-0.25pF	0.5,1,2,3,4,5(pF)
D	Compensating	ΔC to ΔX	< 10pF	+/-0.5pF	6,7,8,9(pF)
J	Туре		≧10pF	+/-5%	E12 Step
K	High Dielectric	R6/R7		+/-10%	E6 Step
Z	Constant Type	F5	+{	80/-20%	E3 Step

^{*}E24 step is also available for GRM03/15,GRM18 1 to 9.1pF.

_	O1 -	_
-	~TQ1	7
		u

E24	1. 1.1	12 13	1.5 1.6	1.8 2	22	24	27	3	3.3	3.6	3.9	4.3	4.7	5.1	5.6	62	68	7.5	82	9.1
E12	1	1.2	1.5	1.8	2	.2	2.	7	3.	.3	3.	.9	4	.7	5.	6	6.	8.	8.	2
E6	E6 1 1.5			2.2 3.3					4.7 6.8											
E3	Eo 1				2.2					4.7										

3.6 PACKAGING

Packaging is the following method. According to Packaging Methods.

Packaging Code	Specification	Packaging Unit
В	Bulk Packaging in a bag	1000pcs./bag (Only GRM43S,GRM55E/F:500pcs./bag)
D	φ178 Paper Tape Carrier Packaging	
L	φ178 Plastic Tape Carrier Packaging	·
E	φ178 Special Packaging	According to Conscitones Value
J	φ 330 Paper Tape Carrier Packaging	According to Capacitance Value and Tolerance
К	φ330 Plastic Tape Carrier Packaging	
F	ф330 Special Packaging	
С	Bulk Case Packaging	

4.SPECIFICATIONS

According to Specifications and Test Methods.

Appendix 1. CAPACITANCE VALUE AND TOLERANCE 50V max. < Temperature Compensating Type>

	DC		Т		Temp	erature (Characte	eristics a	nd Capa	acitance (pF		φ178 Packag-
Туре	RATED VOLTAGE (V)	Code	Thickness (mm)	5C	6C	6P	6R	6S	6T	7U	1X	ing Unit (pcs./Reel)
	50			0.1 ~ 100			_	-	*****	1 ~ 15		45000
GRM03	25	3	0.3+/-0.03	0.5 ~ 100			1 ~ 100	1 ~ 100	1 ~ 100	18 ~ 100	****	15000
	50			0.1 ~ 1000		3 ~ 27	3 ~ 33	3 ~ 39	3 ~ 100	0.2 ~ 180	0.2 ~ 180	40000
GRM15	25	5	0.5+/-0.05								220 ~ 390	10000
	10			_			_	-		1200 ~ 4700		
	50	8	0.8+/-0.1	0.5 ~ 3900		3 ~ 150	3 ~ 180	3 ~ 220	3 ~ 470	3 ~ 680 1000 ~ 10000	3 ~ 680 1000 ~ 10000	
GRM18	25		,	_		_	_		_		820 ~ 1500	4000
	4.6	5	0.5+0/-0.1	_	****	-	_		_	5600 ~ 10000		
	10	8	0.8+/-0.1	_			_	_		12000 ~ 22000		
	50	6	0.6+/-0.1	3300 ~ 4700	***	_	359094		_	3 ~ 1200 10000 ~ 18000	3 ~ 1200 10000 ~ 18000	
		9	0.85+/-0.1	5600 ~ 15000	-	180 ~ 330	220 ~ 470	270 ~ 470	-	1500 ~ 2200 22000 ~ 27000	1500 ~ 2200 22000 ~ 27000	4000
		Α	1.0+0/-0. 2		-	_		_		33000	33000	3000
GRM21		В	1.25+/-0.1	18000 ~ 22000		390 ~ 560	560 ~ 680	560 ~ 820	560 ~ 1800	39000 ~ 47000	2700 ~ 3300 39000 ~ 47000	3000
-		6	0.6+/-0.1		_		_			27000 ~ 33000		4000
	10	9	0.85+/-0.1		_			<u> </u>	-	39000 ~ 56000		
		В	1.25+/-0.1		****	_		_	****	68000 ~ 100000		3000
***************************************		6	0.6+/-0.1		<u> </u>				<u> </u>	220 ~ 1800		4000
		9	0.85+/-0.1	12000 ~ 39000	_	680 ~ 820	820	1000	_	56000	2200 ~ 5600 56000	
GRM31	50	М	1.15+/-0.1	47000 ~ 56000	_	1000 ~ 1500	1000 ~ 1500	1200 ~ 1800	2200 ~ 3900	6800 ~ 8200 68000 ~ 100000	6800 ~ 8200 68000 ~ 100000	3000
		С	1.6+/-0.2	68000 ~ 100000	_	PAGE	_	p-0	_			2000
	~-	9	0.85+/-0.1	10000			~~~	_	_		_	3000
	25	С	1.6+/-0. 2	100000		_			<u> </u>			2000
Capac	itance Tolei	ance		(0.5 to 5 C:+/-0.			I to 9.1pI :+/-0.5pF		(More th J:+/-	an10pF) 5%		

^{1 :} Inner electrode : Nickel , Palladium or Silver/Palladium

Appendix 2. CAPACITANCE VALUE AND TOLERANCE 50V max. <High Dielectric Constant Type>

Not Apply.

Appendix 3. CAPACITANCE VALUE AND TOLERANCE (100V)

and the second s	DC		′	Temperature Characteris	tics and Capacitance (pF)	1170				
Туре	RATED VOLTAGE		T		erature ating Type	φ178 Packag- ing Unit				
	(V)	Code	Thickness (mm)	5C	1X	(pcs/Reel				
GRM15	100	5	0.5+/-0.05		_	10000				
GRM18	100	8	0.8+/-0.1	0.5 ~ 1500	0.5 ~ 390	4000				
		6	0.6+/-0.1	100 ~ 3300	_	4000				
GRM21	100	9	0.85+/-0.1	1 ~ 82	470 ~ 680	4000				
		В	1.25+/-0.1	_	820 ~ 1800	3000				
		9	0.85+/-0.1	1800 ~ 10000	_	4000				
GRM31	400		1.15+/-0.1	-	2200 ~ 4700	3000				
	100	М	1.15+/-0.15	-		3000				
		С	1.6+/-0.2	***	_	2000				
		N	1.35+/-0.15		5600 ~ 6800	2000				
GRM32	100	С	1.6+/-0.2		-	2000				
GHWIOZ	100	100	100	100	D	2.0+/-0.2	pron.	***	1000	
		Е	2.5+/-0.2	. -	_	1000				
			N		N		1.35+/-0.15	_	8200	
		С	1.6+/-0.2	-	· -					
GRM43	100	R	1.8+/-0.2		10000 ~ 15000	1000				
		D	2.0+/-0.2		-					
		Е	2.5+/-0.2			500				
	***************************************	М	1.15+/-0.1	_	18000					
		N	1.35+/-0.15	•••	22000	4,000				
GRM55	100	R 1.8+/-0.5		_	27000 ~ 39000	1000				
		D	2.0+/-0.2	_	_					
		E	2.5+/-0.2			500				
(Capacitance	e Tolera	ance	•	C:+/-0.25pF F) D:+/-0.5pF pF) J:+/-5%					

^{1 :} Inner electrode : Nickel , Palladium , or Silver/Palladium.

	_ ·		NO AND TE		ification				***************************************	~-~~-			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ГО
No.	lt:	em	Temperature Compensating Type	е	High Die	electric T	уре				Test	Method		
1	Operating T Range	emperature	-55°C to +125°C		to +105°C	E4:10	5°C to +125°C °C to +85°C -55°C to +150°C	Refere	ence Tem	peratur	re : 25°C			
	Rated Volta		See the previous page	s				The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P,P} or V ^{O,P} , whichever is larger, should be maintained within the rated voltage range.			hich may be e is larger,			
4	Appearance Dimension	•	No defects or abnorma Within the specified dir					Visual inspection. Using calipers or Microscope. (GRM02 size is based on Microscope)						
5	Dielectric Strength		No defects or abnorma	defects or abnormalities		to 7U is app	and 1X) o lied betwe	r 250% en the	of the rate	ed voltag ins for 1 t	6 of the rated te (R6, R7,C8 to 5 seconds, nA.	,E4 and F5)		
6	Insulation R	tesistance	More than 10,000MΩ (whichever is smaller)	or 500Ω·F				excee		ated vo			ured with a D 75%RH max.	
7 8	Capacitance Q/	е		R6,R7,C8,L8]			-	The co	apacitance ncy and v	e/Q/D.F /oltage	F. should b shown in t	e measu the table.	red at 25°C	at the
	Dissipation (D.F.)	Factor	30pF and below : V V V V V V V V V V V V V V V V V V	: 	0,035max. 0,05max. (C 0,1max.(C ≧	<u>≧</u> 0.068μ (< 3.3μF)	F)	Item	to 7 (1000	AC 'U,1X)pF and low)	ΔC to 7U (more than R6,R7,0 (C = 1	,1X 1000pF) 08,F6	R6,R7,F5 (C>10µF)	E4
			Capacitance (pF)	≣4] W.V.;25Vr =5] W.V.;25Vr :0.05max. (C W.V.;16/10V;	nin :0.025m: nin, < 0.1μF) :0.	.09max. (Freque Volta	<u>-</u>	.1MHz 5Vrms	1±0.1		120±24Hz 0.5±0.1Vrms	1±0.1kHz 0.5± 0.05Vrms
	Character- istics		(Table A -1)	Column		The to mean sequentemp the sequence capa caludary	emperatured in sentially from coeffs.:- pecified to citance cloudated by	re coeff tep 3 a om step +25°C oleranc hange a dividin measu	s a referer of through to +85°C) e for the te as Table A ig the diffe	etermind nce. Who is a contract to the capa emperature. -1. The capa erences b	using the cap en cycling the 25°C to +125 acitance shou are coefficient apacitance d etweeen the r ep 1,3 and 5 l	temperature °C, other ld be within and ift is naximum		
		Temperature	Within the specified to		to +85°C		Within+22/-82%	value	Step 1). 	T	emperati 25±		
		Coefficent	(Table A -1)						2	1	:3(for∆C to ±3(for F5)		······································	79)
		Capacitance Drift	Within ±0.2% or ±0.0 (Whichever is larger.) *Not apply to 1X/25V	•		,			4 5	1		r R9),126	5±3(for ∆C/R ±3(for other T	1
			*NOT APPLY TO 17/25V					The rover the solution the solu	anges of o the tempo pecified r al measure rm a heat nen set fo	capaciti erature anges. ement f treatm r 24±2	ranges sh for high die	ge comp own in the electric co +0/-10°C room terr	ared with the ne table shoul onstant type, for one hour perature.	d be within
10	Adhesive S Termination		No removal of the term	ninations or et	her defect si	c	ur.	Fig.1 the test The somethor	using a eu at jig for 1 oldering s d and sho	itectic s 0±1se hould b ould be	solder. The c. ie done eit conducted iects such	en apply the her with a with car as heat s	epoxy board): *10N force in an iron or usin re so that the shock 5, GRM18)	parallel with
									Type GR⊟02 GR⊟03		2N a 0.2 0.3	N (GR⊡0 b 0.56 0.9	3),1N(GR□02 c 0.23 0.3)
			l Le	Fig.1	_ \	Solder res Baked ele copper fo	ectrode or		GRID15 GRM18 GRM21 GRM31		0.4 1.0 1.2 2.2	1.5 3.0 4.0 5.0	0.5 1.2 1.65 2.0	
									GRM32 GRM43		2.2 3.5	5.0 7.0	2.9	no pro-
					······································				GRM55		4.5	8.0	5.6	(in:mm)

	<i>,</i>		NO VIND I FO		·····	
	***************************************			Sp	ecification	
No.	l Ite	em	Temperatur	A	High Dielectric Type	Test Method
			Compensating -		r ng/r b/oloomic rypo	
11	Vibration	Annagrana	No defects or abnormali		<u> </u>	Solder the capacitor on the test jig (glass epoxy board) in the
11						same manner and under the same conditions as(10). The
	nesistance	······································	Within the specified tole		\$ 1.03	capacitor should be subjected to a simple harmonic motion
		Q/D.F.	30pF and over:Q ≧1000			having a total amplitude of 1.5mm, the frequency being varied
	1			W.V.:100	V : 0.025max. (C < 0. 068μF)	uniformly between the approximate limits of 10 and 55Hz. The
			30pF and below:		: 0.05max.(C ≧ 0.068µF)	frequency range, from 10 to 55Hz and return to 10Hz, should
			Q 2 400+20C	W.V.:25/5	50V :0.025max.	be traversed in approximately 1 minute. This motion should be
			Oshla saisa al	W.V.:16/1	0V :0.035max.	applied for a period of 2 hours in each 3 mutually perpendicular
			C:Nominal Capacitance (pF)	W.V.:6.3\	//4V :0.05max. (C < 3.3μF)	directions(total of 6 hours).
			Capacitance (pr)		:0.1max.(C ≧ 3.3μF)	anosiono(total of o nouro).
	·				50V: 0.05max.	
				{ L .	:25Vmin. :0.025max	
				[F5] W.V.	:25Vmm. x, (C < 0.1μF) :0.09max,(C ≧ 0.1μF)	
	1				x. (C < 0.1μr) .0.09πax.(C = 0.1μr) /10V:0.125max. W.V.:6.3V:0.15max.	
<u> </u>		·	No supply or moreland dof:	<u> </u>	**************************************	Caldrette conceits on the test iis (siege annual begand about
12	Deflection		INO CLECK OF HISTRED DER	o crack or marked defect should occur		Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2 using a custodia colder. Then apply a force in the
						in Fig.2 using a eutectic solder. Then apply a force in the
						direction shown in Fig 3 for 5±1sec. The soldering should be done by the reflow method and should be conducted with care
						so that the soldering is uniform and free of defects such as heat
					•	shock.
1				20,150)	
					Pressunzing	\$ \$4.5
					speed:1.0mm/sec.	
			R23	0/_/	Pressunze	
			9			
			I Y T	T		Constitution the statement of the statem
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Flexure: ≤ 1	
			C	apacitanc	e meter	Fig.2 t : 1.6mm
				45 4	5	(GRD02/03,GRB15:0.8mm)
				1	***************************************	
				Fig.3		
						Type a b c
						GR□02 0.2 0.56 0.23
					•	GR□03 0.3 0.9 0.3
						GR□15 0.4 1.5 0.5
	İ					GRM18 1.0 3.0 1.2
						GRM21 1.2 4.0 1.65 (in:mm)
						GRM31 2.2 5.0 2.0 (87.11411)
						GRM32 2.2 5.0 2.9 GRM43 3.5 7.0 3.7
						GRM43 3.5 7.0 3.7 GRM55 4.6 8.0 5.6
						G. 1870 4.0   5.0   5.0
13	Solderability	/ of	75% of the terminations	is to be sold	tered evenly and continuously	Immerse the capacitor in a solution of ethanol(JIS-K-8101) and
	Termination					rosin (JIS-K-5902) (25% rosin in weight propotion). Preheat at
ł	i					80 to 120°C for 10 to 30 seconds. After preheating , immerse
						in an eutectic solder solution for 2±0.5 seconds at 230±5°C or
1						Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±
ļ						
14	Resistance		1	rved charac	cteristics should satisfy the specifications in	Preheat the capacitor at *120 to 150°C for 1 minute. Immerse
	Soldering H	eat	the following table			the capacitor in an eutectic solder solution* or Sn-3.0Ag-0.5Cu
		Appearan	No defects or abnormali	ties		solder solution at 270±5°C for 10±0.5 seconds. Set at room
		ce				temperature for 24±2 hours, then measure.
-			Within ±2.5% or ±0.25	ρF	R6,R7,C8,L8,R9:Within ±7.5%	T*Not apply to GRM02
		ce	(Whichever is larger)	•	E4,F5:Within ±20%	4078-4
Ì		Change	((( in single)			Initial measurement for high dielectric constant type
						Perform a heat treatment at 150+0/-10°C for one hour and
						then set at room temperature for 24±2 hours.
		1				Perform the initial measurement.
		1				*Preheating for GRM32/43/55
		}				Treneating for Grivio2/40/00
	]			·		
		Q/D.F.	30pF and over:Q≥ 1000	[R6,R7,C	8,L8]	Cton Torrestive
1					V : 0.025max.(C < 0. 068μF)	Step Temperature Time
			30pF and below:		: 0.05max. (C≧ 0.068µF)	1 100°C to 120°C 1 min.
			Q ≥ 400+20C	W.V -25/5	60V :0.025max.	2 170°C to 200°C 1 min.
1			i		0V :0.035max.	
			C:Nominal			
1			Capacitance (pF)	vv.vo.3\	//4V :0.05max.(C < 3.3μF)	
]				rpaner.	:0.1max.(C≧ 3.3μF)	
1					50V: 0.05max.	
	I	-			:25Vmin :0.025max	
1	1	1		[F5] W.V.:		
		,	ſ		V (C - 0.1E) +0.00mov (C> 0.1E)	1
		1		:0.05ma:	x. $(C < 0.1\mu F)$ :0.09max. $(C \ge 0.1\mu F)$	
		<u> </u>			7. (C < 0.1με) .0.09max. (C = 0.1με) /10V:0.125max. W.V.:6.3V:0.15max.	THE STATE OF THE S
		1 12		W.V.:16/	/10V:0.125max. W.V.:6.3V:0.15max.	
		æ.	More than 10,000MΩor	W.V.:16/	/10V:0.125max. W.V.:6.3V:0.15max.	
		I.R. Dielectric Strength	More than 10,000MΩor No defects	W.V.:16/	/10V:0.125max. W.V.:6.3V:0.15max.	

				Speci	ification					
No.	l1	iem	Temperatur Compensating		High Dielectric Type	***************************************	Te	st Metho	od	
15	Temperatu	, ,	The measured and obser the following table No defects or abnormalitie		istics should satisfy the specifications in	under the sa according to	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments shown in the following table. Set for 24±2 hours at room temperature, then measure			
	-	Capacitance Change	Within ±2.5% or ±0.25pF R6,R7,C8,L8,R9:Within ±7.5%		Step	1	2	3	4	
	**************************************	Q/D.F.	(Whichever is larger)  30pF and over:Q ≥ 1000	ichever is larger) E4,F5:Within ±20%  F and over:Q ≥ 1000 [R6,R7,C8,L8]		Temp.(°C)	Min. Operating Temp. +0/-3	Room Temp.	Max. Operating Temp. +3/-0	Room Temp.
	C:Nominal Capacitance (pF)  W.V.:6.3V/4V :0.05max. (C < 3.3μF) :0.1max. (C ≧ 3.3μF) [R9]W.V.:50V: 0.05max. [E4] W.V.:25Vmin. :0.025max [F5] W.V.:25Vmin. :0.09max.(C ≧ 0.1μF) W.V.:16/10V:0.125max. W.V.:6.3V:0.15max.		Time			2 to 3				
		I.R.	More than 10,000MΩor 5	00Ω⋅F (Which	hever is smaller)					
		Dielectric	No defects							
10	1 50,000 1 4134	Strength	The magazine decided the con-	vod shar	intion chould nation; the excellinations in	Cat the see	acitor at 40±00	n and in (	90 to 95% humi	duty for
16	Humidity Steady Sta	te	the following table	ved character	istics should satisfy the specifications in	500 ± 12 ho		⇒ and in s	90 to 95% numi	duty for
			No defects or abnormaliti	es		1	d set for 24±2 l	nours at ro	om temperature	, then
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)		R6,R7,C8,L8,R9:Within ±12.5% E4,F5:Within ±30%	measure.				
		Q/D.F.	30pF and over:Q≥350 10pF and over, 30pF and below: Q≥275 + 5/2 C		,L8] : : 0.05max. (C < 0.068μF) : 0.075max. (C ≧ 0.068μF) OV :0.05max.					
		TABLE TO THE TABLE	10pF and below: Q ≧ 200+10C C:Nominal Capacitance(pF)	W.V.:6.3V/ [R9]W.V.:5 [E4] W.V.:2 [F5] W.V.:2 :0.075max	<ul> <li>V:0.05max.</li> <li>(4V:0.075max. (C &lt;3.3μF)</li> <li>:0.125max. (C ≥ 3.3μF)</li> <li>:0.075max.</li> <li>25Vmin.:0.05max.</li> <li>25Vmin.</li> <li>. (C&lt; 0.1μF) :0.125max. (C ≥ 0.1μF)</li> <li>OV:0.15max. W.V.:6.3V:0.2max.</li> </ul>	)				
		I.R.	More than 1,000MΩor 50							
		Dielectric	No defects							
17	Humidity L	Strength oad	The measured and obser the following table	ved character	ristics should satisfy the specifications in	Apply the ra		0±2°C a	nd 90 to 95% hเ	ımidity for
		Annearance	No defects or abnormaliti	es		1		nours at ro	oom temprature,	then
			Within ±7.5% or ±0.75p (Whichever is larger)	ithin ±7.5% or ±0.75pF R6,R7,C8,L8,R9:Within ±12.5% The charge/discharge curre		16Vmax. for 1 hour	at 40±2°C .			
The second secon		Q/D.F.	30pF and over:Q ≥ 200  30pF and below: Q ≥ 100 + 10/3 C  C:Nominal Capacitance(pF)	W.V.:25/50 W.V.:16/10 W.V.:6.3V/ [R9]W.V.:5 [E4] W.V.:2 [F5] W.V.:2 :0.075max	(C < 0.05max. (C < 0.068μF) : 0.075max. (C ≧ 0.068μF) OV :0.05max. OV :0.05max. (4V:0.075max. (C < 3.3μF) :0.125max. (C ≧ 3.3μF) :00V: 0.075max. 25Vmin.:0.05max.	Perform initi	d set for 24±2 fi iat measuremen		oom temperature	·
		I.R.	More than 500MΩor 25Ω							
		Dielectric Strength	No defects							
	The state of the s	To the state of th	1							

				Spec	cification	
No.	lte:	m	Temperatu Compensating		High Dielectric Type	Test Method
18	High Tempera Load	ture	The measured and obs in the following table	ared and observed characteristics should satisfy the specifications wing table		Apply 200% of the rated voltage at the maximun operating temperature $\pm 3^{\circ}$ C for 1000 $\pm 12$ hours . Set for 24 $\pm 2$ hours at
	]	Appearance	No defects or abnorma	lities		room temperature, then measure.
	1	Capacitance Change	Within ±3% or ±0.3pl (Whichever is larger)		R6,R7,C8,L8,R9:Within $\pm 12.5\%$ E4:Within $\pm 30\%$ F5:Within $\pm 30\%$ (Cap<1.0 $\geq \mu$ F) F5:Within +30/-40% (Cap $\geq 1.0\mu$ F)	The charge/discharge current is less than 50mA.  Initial measurement for high dielectric constant type.  Apply 200% of the rated DC voltage at the maximun operating temperature ±3°C for one hour. Remove and set for 24±2 hours at room temperature.Perform initial measurement.
			30pF and over:Q ≥ 350	[R6,R7,C8	,L8]	
		Q/D.F.	10pF and over, 30pF and below:  Q ≥ 275+ 5/2 C  10pF and below: Q ≥ 200+10C  C:Nominal Capacitance(pF)	W.V.:100V W.V.:25/50 W.V.:16/10 W.V.:6.3V/ [R9]W.V.:5 [E4] W.V.:2 [F5] W.V.:2 :0.075max	: 0.05max. (C < 0.068μF) : 0.075max. (C ≧ 0.068μF) )V :0.05max. )V :0.05max. 4V:0.075max. (C < 3.3μF) :0.125max. (C ≧ 3.3μF) :0V: 0.075max. 25Vmin.:0.05max.	
	I.R. More th		More than 1,000MΩor	50Ω·F(Which	ever is smaller)	
		Dielectric Strength	No defects			

#### Table A-1

			(	Capacitance Char	ige from 25 °C (%	)	
Char.	Nominal Values	-55		-30		-10	
	(ppm/°C) Note 1	Max.	Min.	Max.	Min.	Max.	Min.
5C	0± 30	0.58	-0.24	0.40	-0.17	0.25	-0.11
6C	0±60	0.87	-0.48	0.59	-0.33	0.38	-0.21
6P	-150± 60	2.33	0.72	1.61	0.50	1.02	0.32
6R	-220± 60	3.02	1.28	2.08	0.88	1.32	0.56
6S	-330± 60	4.09	2.16	2.81	1.49	1.79	0.95
6T	-470± 60	5.46	3.28	3.75	2.26	2.39	1.44
7U	-750±120	8.78	5.04	6.04	3.47	3.84	2.21
1X	+350~-1000		_		AA		

Note 1: Nominal values denote the temperature coefficient within a range of 25 °C to 125°C (for \( \Delta C \) /85°C (for other TC).

There are three type of packaging for chip monolithic ceramic capacitor.

Please specify the packaging code.

1.Bulk Packaging(Packaging Code=B):In a bag.

Minimum Quantity : 1000(pcs./bag) , Only GR $\square$ 43S, GR $\square$ 55E/F : 500(pcs./bag)

2.Tape Carrier Packaging(Packaging Code:D/E/F/L/J/K)

2.1 Minimum Quantity(pcs./reel)

		φ178	reel	ф330	reel -
T	уре	Paper Tape	Plastic Tape	Paper Tape	Plastic Tape
		Code:D/E	Code:L	Code:F/J	Code:K
GR□02		20000	40000		
GR⊡03		15000		50000	
GR□15		10000		50000	
GR□18		4000		10000	
CDETA	5/6/9	4000		10000	
GR□21	A/B		3000		10000
	6/9	4000		10000	
GR <u></u> 31	M/X		3000		10000
	С		2000		6000
	5/6/9	4000		10000	
	A/M		3000		10000
GR <u></u> 32	N		2000		8000
	С		2000		6000
	R/D/E		1000		4000
***************************************	М		1000		5000
	N/C/R		1000		4000
GR□43	D		1000		4000
	E		500		2000
	S		500		1500
	М		1000		5000
	N/C/R		1000		4000
GR⊡55	D		1000		4000
	E		500		
	F/X		300		1500

# 2.2 Dimensions of Tape

# (1)GR□02 (Code:L)



# 2.2 Dimensions of Tape

(2)GR₀₂(Code:D)/03/15

(in: mm)



Code	GR□02	GR□03	GR⊡15	
A *3	0.25	0.37	0.65	
B *3	0.45	0.67	1.15	*3 Nominal
a1,b1 *3			0.15	value
t	0.4 max.	0.5 max.	0.8 max.	

# (3) GR□18/21/31/32 T:0.85 max.



0.8 max (T=0.5mm) 1.1 max (T=0.85mm)

Code	GR⊡18	GR□21	GR <u></u> 31	GR <u></u> 32
Α	1.05±0.1	1.55±0.15	2.0±0.2	2.8±0.2
В	1.85±0.1	2.3±0.15	3.6±0.2	3.6±0.2
a1,b1	0.25±0.2	0.4±0.2	0.4±0.2	0.4+0.3/-0.2





1.7 max.  $(T \le 1.25 mm)$ 2.5 max. (T:1.35/1.6mm) 3.0 max. (T:1.8/2.0mm) 3.7 max. (T ≥2.5mm)

Code	GR <u></u> 21	GR <u></u> 31	GR□32
Α	1.45±0.2	1.9±0.2	2.8±0.2
В	2.25±0.2	3.5±0.2	3.5±0.2



-	Code	GR□43	GR⊡55	47
	A*7	3.6	5.2	*1. V:
	B *7	4.9	6.1	•

7Nominal value

(in:mm) Fig.1 Package Chips Chip Fig.2 Dimensions of Reel  $2.0 \pm 0.5$ ♦ 178±2.0/ ♦ 330±2.0 φ21±0.8 ф 50 min. Fig.3 Taping Diagram W  $W_1$ GR□02(Code:L) 8.0 max 5±1.5 GR[]02(Code:D) 16.5 max. 10±1.5 /GR□32 max. GR□43/55 20.5 max. 14±1.5 Top Tape: Thickness 0.06 Feeding Hole :As specified in 2.2. Hole for Chip: As specified in 2.2. Bottom Tape : Thickness 0.05 (Only a bottom tape existence) Base Tape : As specified in 2.2.

- 2.3 Tapes for capacitors are wound clockwise shown in Fig.3.
  - (The sprocket holes are to the right as the tape is pulled toward the user.)
- 2.4 Part of the leader and part of the vacant section are attached as follows.



- 2.5 Accumulate pitch: 10 of sprocket holes pitch =  $40\pm0.3$ mm
- 2.6 Chip in the tape is enclosed by top tape and bottom tape as shown in Fig.1.
- 2.7 The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
- 2.8 There are no jointing for top tape and bottom tape.
- 2.9 There are no fuzz in the cavity.
- 2.10 Break down force of top tape : 5N min.

Break down force of bottom tape : 5N min. (Only a bottom tape existence )

- 2.11 Reel is made by resin and appeaser and dimension is shown in Fig 2. There are possibly to change the material and dimension due to some impairment.
- 2.12 Peeling off force: 0.1 to 0.6N*8 in the direction as shown below.

*8 GR 02.03:0.05 N~0.5 N



2.13 Label that show the customer parts number, our parts number, our company name, inspection number and quantity, will be put in outside of reel.

# 3.Bulk Case Packaging (Packaging Code=C)

Fig.4 Dimensions of Bulk case



3.1 Minimum Quantity(pcs./case)

GR□15		50000
GR□18		15000
GR□21	6	10000
	В	5000

3.2 Case is made by resin of transparence or semitransparency, and appeaser and dimension is shown in Fig.4.

There are possibility to change the material and dimension due to some impairment.

3.3 Case must be marked in Customer 's part number, MURATA part number, MURATA name, Inspection number and quantity(pcs).

#### **ACAUTION**

#### Limitation of use

Please contact our sales representatives or product engineers before using our products for the applications listed below which require of our products for other applications than specified in this product.

- ①Aircraft equipment
- ②Aerospace equipment
- ③Undersea equipment

- ©Transportation equipment(vehicles,trains,ships,etc.) ®Disaster prevention / crime prevention equipment
- Traffic signal equipment
- Mathematical Application of similar complexity and/or requirements to the applications listed in the above

  1. **Text of the application of the application of the applications are applications. The application of the application of the application of the application of the applications are applications. The application of the application of the application of the applications are applications.

  1. **Text of the application 
#### **△CAUTION**

#### Storage and Operating Conditions

- 1. Chip monolithic ceramic capacitors (chips) can experience degradation of termination solderability when subjected to high temperature or humidity, or if exposed to sulfur or chlorine gases. Storage environment must be at an ambient temperature of 5-40 °C, and an ambient humidity of 20-70% RH. Use chip within 6 months, If 6 months or more have elapsed, check solderability before use. (Reference Data 1/ Solderability) Insulation Resistance should be deteriorated on specific condition of high humidity or incorrosion gas such as hydrogen sulfide, sulfurous acid gas, cholorine. Those condition are not suitable for use.
- 2.Use of Sn-Zn based solder will deteriorate reliability of MLCC. Please contact murata factory for the use of Sn-Zn based solder in advance.
- 3.Do not use under the condition that causes condensation.
- Use dampproof countermeasure if using under the condition that causes condensation.

#### **△CAUTION**

- Handling
  - 1.Inspection
  - Thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing.
- 2.Board Separation (or Depane-lization)
- Board flexing at the time of separation causes cracked chips or broken solder.
- Severity of stresses imposed on the chip at the time of board break is in the order of: Pushback<Slitter<V</li> Slot<Perforator.
- Board separation must be performed using special jigs, not with hands.
- 3.Reel and bulk case
  - In the handling of reel and case, please pay attention not to drop it. Please do not use chip of the case which dropped.

#### **△CAUTION**

- Soldering and Mounting
- 1.Mounting Position
- Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.



#### 2.Chip Placing

- •An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. So adjust the suction nozzle's bottom dead point by correcting warp in the board.
  - Normally, the suction nozzle's bottom dead point must be set on the upper surface of the board. Nozzle pressure for chip mounting must be a 1 to 3N static load.
- Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes great force on the chip during mounting, causing cracked chips. And the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically.

# 3. Caution for Soldering

#### (1) Reflow soldering

- •When the sudden heat is given to the components, the mechanical strength of the components should go down because remarkable temperature change causes deformity of components inside. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board.Preheating conditions are shown in table 1. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible.
- Solderability of Tin plating termination chip might be deteriorated when low temperature soldering profile where peak solder temperature is below the Tin melting point is used.
  - Please confirm the solderability of Tin plating termination chip before use.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the table 1.

Table 1

Part Number	Temperature Differential
GR□02/03/15 GR□18/21/31	ΔΤ ≤ 190°C
GR□32/43/55	Δ T ≦ 130°C

**Recommended Conditions** 

	Pb-Sn S	Lead Free	
	Infrared Reflow	Vapor Reflow	Solder
Peak Temperature	230-250°C	230-240°C	240-260°C
Atmosphere	Air	Air	Air or N2

Pb-Sn Solder: Sn-37Pb Lead Free Solder: Sn-3.0Ag-0.5Cu





Vapor Reflow



#### [Allowable Soldering Temperature and Time]



In case of repeated soldering, the accumulated soldering time must be within the range shown above.

- Optimum Solder Amount for Reflow Soldering
  - Overly thick application of solder paste results in excessive fillet height solder.
     This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked chips.
- •Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied
   * smoothly to the end surface to a height of 0.2mm min.



#### Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

#### (2)Leaded Component Insertion

If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.

Before mounting leaded components, support the PCB using backup pins or special jigs prevent warping.

#### (3) Flow Soldering

- When the sudden heat is given to the components, the mechanical strength of the components should go down because remarkable temperature change causes deformity of components inside. And an excessively long soldering time or high soldering temperature results in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in table 2. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible.
   When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

Do not apply flow soldering to chips not listed in Table 2.

Table 2

Part Number	Temperature Differential
GR□18/21/31	Δ T ≦ 150°C

#### Recommended Conditions

	Pb-Sn Solder	Lead Free Solder
Preheating Peak Temperature	90-110°C	100-120°C
Soldering Peak Temperature	240-250°C	250-260°C
Atmosphere	Air	N ₂

Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu



Optimum Solder Amount for Flow Soldering
 The top of the solder fillet should be lower than the
 thickness of components. If the solder amount is
 excessively big, the risk of cracking is higher during board
 bending or under any other stressful conditions.



#### (4) Correction with a Soldering Iron

•When the sudden heat is given to the components by soldering iron, the mechanical strength of the components should go down because remarkable temperature change causes deformity of components inside. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board.

Preheating conditions are shown in table 3. It is required to keep temperature differential between the soldering and the components surface ( $\Delta T$ ) as small as possible. After soldering, it is not allowed to cool it down rapidly.

Table 3

Part Number	Temperature Differential	Peak Temperature	Atmosphere
GR□03/15 GR□18/21/31	ΔΤ≦190°C	300°C max. 3 seconds max. /termination	Air
GR□32/43/55	ΔΤ ≦130°C	270°C max. 3 seconds max /termination	Air

*Applicable for both Pb-Sn and Lead Free Solder

Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

Optimum Solder Amount when Corrections Are Made Using a Soldering Iron

The top of the solder fillet should be lower than the thickness of components. If the solder amount is excessively big, the risk of cracking is higher during board bending or under any other stressful conditions.

Soldering iron  $\phi$ 3mm or smaller should be required. And it is necessary to keep a distance between the soldering iron and the components without direct touch. Thread solder with  $\phi$ 0.5mm or smaller is required for soldering.



#### 4.Washing

Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

Failure to follow the above cautions may result, worst case, in a short circuit and fuming when the products is used.

#### NOTICE

#### ◆Soldering and Mounting

#### 1.PCB Design

(1)Notice for Pattern Forms

 Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate.

They are also more sensitive to mechanical and thermal stresses than leaded components. Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height.

•It has a possibility to happen the chip crack by the expansion and shrinkage of metal board. Please contact us if you want to use the ceramic capacitor on metal board such as Aluminum.

#### Pattern Forms

	Placing Close to Chassis	Placing of Chip Components and Leaded Components	Placing of Leaded Components after Chip Component	Lateral Mounting
prohibited	Chassis Solder(Ground) Electrode pattern	Lead wire	Soldering iron  Lead wire	
Correct	Solder resist	Solder resist	Solder resist	Solder resist

(2)Land Dimensions



Table 1 Flow Soldering Method

Dimensions Part Number	Dimensions(L X W)	а	b	С
GR□18	1.6 X 0.8	0.6-1.0	0.8-0.9	0.6-0.8
GR□21	2.0 X 1.25	1.0-1.2	0.9-1.0	0.8-1.1
GR□31	3.2 X 1.6	2,2-2.6	1.0-1.1	1.0-1.4

(in : mm)

Table 2 Reflow Soldering Method

Dimensions	Dimonoiono (LV M/)		<b>L</b>	
Part Number	Dimensions(L X W)	a 	b	C
GR□02	0.4 X 0.2	0.16-0.2	0.12-0.18	0.2-0.23
GR□03	0.6 X 0.3	0.2-0.3	0.2-0.35	0.2-0.4
GR□15	1.0 X 0.5	0.3-0.5	0.35-0.45	0.4-0.6
GR□18	1.6 X 0.8	0.6-0.8	0.6-0.7	0.6-0.8
GR□21	2.0 X 1.25	1.0-1.2	0.6-0.7	0.8-1.1
GR□31	3.2 X 1.6	2.2-2,4	0.8-0.9	1.0-1.4
GR□32	3.2 X 2.5	2.0-2.4	1.0-1.2	1.8-2.3
GR□43	4.5 X 3.2	3.0-3.5	1.2-1.4	2.3-3.0
GR□55	5.7 X 5.0	4.0-4.6	1.4-1.6	3.5-4.8

(in:mm)

#### 2.Adhesive Application

Thin or insufficient adhesive causes chips to loosen or become disconnected when flow soldered. The amount of adhesive must be more than dimension c shown in the drawing below to obtain enough bonding strength.

The chip's electrode thickness and land thickness must be taken into consideration.

 Low viscosity adhesive causes chips to slip after mounting. Adhesive must have a viscosity of 5000pa-s(500ps)min. (at 25°C)



#### 3.Adhesive Curing

Insufficient curing of the adhesive causes chips to disconnect during flow soldering and causes deteriorated insulation resistance between outer electrodes due to moisture absorption.

Control curing temperature and time in order to prevent insufficient hardening.

#### Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

#### 4.Flux Application

- •An excessive amount of flux generates a large quantity of flux gas, causing deteriorated solderability. So apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering).
- Flux containing too high a percentage of halide may cause corrosion of the outer electrodes unless sufficiently cleaning. Use flux with a halide content of 0.2% max.

  But do not use strong acidic flux.

Do not use water-soluble flux*.

(*Water-soluble flux can be defined as non resin type flux including wash-type flux and non-wash-type flux.)

#### 5.Flow Soldering

 Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip(full length of the edge A-B-C-D shown below) and 25% of the length A-B shown below as mounted on substrate.



#### **♦**Others

- 1.Resin Coating
  - When selecting resin materials, select those with low contraction.
- 2.Circuit Design
  - These capacitors on this catalog are not safety recognized products.
- 3.Remarks

The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions. Select optimum conditions for operation as they determine the reliability of the product after assembly.

#### **△NOTE**

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. Your are requested not to use our product deviating from this product specification.
- 3.Please return one copy of these specifications upon your acceptance.
  If the copy is not returned by a day mentioned in a cover the specifications will be deemed to have been accepted.
- 4.We consider it not appropriate to include any terms and conditions with regard to the business transaction in the product specifications, drawings or other technical documents. Therefore, if your technical documents as above include such terms and conditions such as warranty clause, product liability clause, or intellectual property infringement liability clause, they will be deemed to be invalid.