

M74HC165

8-bit PISO shift register

Features

- High speed:
 - t_{PD} = 15 ns (typ.) at V_{CC} = 6 V
- Low power dissipation:
 I_{CC} = 4 μA (max.) at T_A = 25 °C
- High noise immunity:
- $V_{\text{NIH}} = V_{\text{NIL}} = 28 \% V_{\text{CC}}$ (Min.)
- Symmetrical output impedance: |I_{OH}| = I_{OL} = 4 mA (min)
- Balanced propagation delays: t_{PLH} ≅ t_{PHL}
- Wide operating voltage range: V_{CC} (opr) = 2 V to 6 V
- Pin and function compatible with 74 series 165

Description

The M74HC165 is a high speed CMOS 8-bit PISO (parallel-in-serial-out) shift register fabricated with silicon gate C²MOS technology. This device contains eight clocked master slave RS flip-flops connected as a shift register, with auxiliary gating to provide overriding asynchronous parallel entry. The parallel data enter when the shift/load input is low and can change while shift/load is low, provided that the recommended set-up and hold times are observed. For clocked operation, shift/load must be high. The two clock inputs perform identically: one can be used as a clock inhibit by applying a high signal, to allow this operation clocking is accomplished through a 2-input nor gate. To avoid double clocking, however, the inhibit signal should only go high while the clock is high. Otherwise the rising inhibit signal causes the same response as rising clock edge. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

Table 1. Device summary

Order code	Package	Packaging
M74HC165B1R	DIP-16	Tube
M74HC165RM13TR	SO-16	Tape and reel
M74HC165TTR	TSSOP16	Tape and reel

4 Maximum rating

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. these are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. refer also to the STMicroelectronics sure program and other relevant quality documents.

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	-0.5 to +7	V
VI	DC input voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC output voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC input diode current	±20	mA
I _{ОК}	DC output diode current	±20	mA
Ι _Ο	DC output current	±25	mA
I _{CC} or I _{GND}	DC V _{CC} or ground current	±50	mA
PD	Power dissipation	500 ⁽¹⁾	mW
T _{stg}	Storage temperature	-65 to +150	°C
TL	Lead temperature (10 sec)	300	°C

Table 4. Absolute maximum ratings

1. (*) 500 mW at 65 $^\circ$ C; derate to 300 mW by 10 mW/ $^\circ$ C from 65 $^\circ$ C to 85 $^\circ$ C

4.1 Recommended operating conditions

 Table 5.
 Recommended operating conditions

Symsbol	Parameter	Value	Unit				
V _{CC}	Supply voltage	Supply voltage					
VI	Input voltage	0 to V _{CC}	V				
Vo	Output voltage	0 to V _{CC}	V				
T _{op}	Operating temperature	-55 to 125	°C				
		$V_{CC} = 2.0 V$	0 to 1000	ns			
t _r , t _f	Input rise and fall time	$V_{CC} = 4.5 V$	0 to 500	ns			
		0 to 400	ns				

5 Electrical characteristics

Table 6.	DC specifications

		Test condition		Value							
Symbol	Parameter	Vcc		T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit
		(V)		Min	Тур	Max	Min	Max	Min	Max	
		2.0		1.5			1.5		1.5		
V_{IH}	High level input voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
		2.0				0.5		0.5		0.5	
V_{IL}	Low level input voltage	4.5				1.35		1.35		1.35	V
		6.0				1.8		1.8		1.8	
		2.0	I _O = -20 μA	1.9	2.0		1.9		1.9		~
	High level output voltage	4.5	I _O = -20 μA	4.4	4.5		4.4		4.4		
V _{OH}		6.0	I _O = -20 μA	5.9	6.0		5.9		5.9		
		4.5	I _O = -4.0 mA	4.18	4.31		4.13		4.10		
		6.0	l _O = -5.2 mA	5.68	5.8		5.63		5.60		
		2.0	I _O = 20 μA		0.0	0.1		0.1		0.1	
		4.5	I _O = 20 μA		0.0	0.1		0.1		0.1	
V _{OL}	Low level output voltage	6.0	I _O = 20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O = 5.2 mA		0.18	0.26		0.33		0.40	
lı	Input leakage current	6.0	$V_I = V_{CC}$ or GND			±0.1		±1		±1	μA
I _{CC}	Quiescent supply current	6.0	$V_{I} = V_{CC}$ or GND			4		40		80	μA

		Test condition		Value							
Symbol	Parameter	v _{cc}	V _{cc}	т	A = 25°	°C	-40 te	o 85°C	-55 to 125°C		Unit
				Min	Тур	Max	Min	Max	Min	Max	
		2.0			30	75		95		110	
t _{TLH} t _{THL}	Output transition time	4.5			8	15		19		22	ns
		6.0			7	13		16		19	
	Propagation delay	2.0			55	150		190		225	
t _{PLH} t _{PHL}	time	4.5			18	30		38		45	ns
	(CLOCK - QH, QH)	6.0			15	26		33		38	
	Propagation delay	2.0			65	165		205	250		
t _{PLH} t _{PHL}	time (SHIFT/LOAD -	4.5			21	33		41		50	ns
	QH, QH)	6.0			18	28		35		43	
	Propagation delay	2.0			52	135		170		205	
t _{PLH} t _{PHL}	t _{PLH} t _{PHL} time	4.5			17	27		34		41	ns
(H - QH, QH)	6.0			14	23		29		35		
fMAX Maximum clock frequency	2.0		7.4	15		6.0		4.8			
	Maximum clock	4.5		37	60		30		24		MHz
		6.0		44	71		35		28		
	Minimum pulse	2.0			24	75		95		110	
t _{W(H)}	width	4.5			6	15		19		22	ns
vv(∟)	(CLOCK)	6.0			5	13		16		19	
	Minimum pulse	2.0			32	75		95		110	
t _{W(L)}	width	4.5			8	15		19		22	ns
	(SHIF I/LOAD)	6.0			7	13		16		19	
	Minimum set-up	2.0			24	75		95		110	
	time (PI-SHIFT/LOAD)	4.5			6	15		19		22	
t _s	(SI - CL <u>OCK)</u> (SHIFT/LOAD - CK)	6.0			5	13		16		19	ns
	Minimum hold time	2.0				0		0		0	
t _b	(PI - SHIFT/LOAD) (SI - CLOCK)	4.5				0		0		0	ns
	(SHIFT/LOAD - CK)	6.0				0		0		0	
	Minimum removal	2.0			20	75		95		110	
t _{REM}	time	4.5			5	15		19		22	ns
	(CLOCK - CK INH)	6.0			4	13		16		19	

Table 7.AC electrical characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

Table 8. Capacitive	characteristics
---------------------	-----------------

		Test condition		Value							
Symbol Parameter		V _{CC}	T _A = 25 °C			-40 to 85 °C		-55 to 125 °C		Unit	
		(•)		Min Typ Max	Min	Max	Min	Max			
C _{IN}	Input capacitance	5.0			5	10		10		10	pF
C _{PD}	Power dissipation capacitance ⁽¹⁾	5.0			55						pF

1. C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}$

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark.

Plastic DIP-16 (0.25) MECHANICAL DATA								
DIM		inch						
DIN.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
Е		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

