Single 2-Input Exclusive-OR Gate

The NL17SZ86 is a high performance single 2–input Exclusive–OR Gate operating from a 2.3 V to 5.5 V supply.

Features

- Extremely High Speed: t_{PD} 2.4 ns (typical) at V_{CC} = 5.0 V
- Designed for 1.65 V to 5.5 V V_{CC} Operation
- Over Voltage Tolerant Inputs
- L_{VTTL} Compatible Interface Capability with 5.0 V TTL Logic with V_{CC} = 3 V
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current Substantially Reduces System Power Requirements
- Replacement for NC7SZ86
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

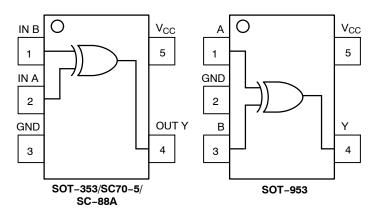
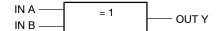



Figure 1. Pinout (Top View)

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

SC-88A / SOT-353 / SC-70 DF SUFFIX CASE 419A

- M = Date Code
 - A = Assembly Location
 - Y = Year
- W = Work Week
- = Pb-Free Package

(Note: Microdot may be in either location)

E = Specific Device Code (E with 90 degree clockwise rotation) M = Month Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

PIN ASSIGNMENT

(SOT-353/SC70-5/SC-88A)

Pin	Function
1	IN B
2	IN A
3	GND
4	OUT Y
5	V _{CC}

PIN ASSIGNMENT (SOT-953)

Pin	Function
1	IN A
2	GND
3	IN B
4	OUT Y
5	V _{CC}

FUNCTION TABLE

Inp	Output	
Α	В	Y
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V
VI	DC Input Voltage	$-0.5~V~\leq~V_{ }~\leq~+7.0~V$	V
Vo	DC Output Voltage, Output in High or Low State (Note 1) (SOT-353/SC70-5/SC-88A Packages)	-0.5 V to V _{CC} + 0.5	V
V _O	DC Output Voltage, Output in High or Low State (Note 1) (SOT-953 Package) Power-Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to + 0.5	V
I _{IK}	DC Input Diode Current V _I < GND	-50	mA
I _{OK}	DC Output Diode Current V _{OUT} < GND, V _{OUT} > V _{CC} (SOT-353/SC70-5/SC-88A Packages)	±50	mA
I _{OK}	DC Output Diode Current (SOT-953 Package) V _{OUT} < GND	-50	mA
Ι _Ο	DC Output Sink Current	±50	mA
I _{CC}	DC Supply Current per Supply Pin	±100	mA
I _{GND}	DC Ground Current per Ground Pin	±100	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
TJ	Junction Temperature under Bias	+ 150	°C
θ_{JA}	Thermal Resistance (Note 2)	350	°C/W
PD	Power Dissipation in Still Air at 85°C	150	mW
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
ESD	ESD Classification Human Body Model (Note 4) Machine Model (Note 5) Charge Device Model (Note 6)	Class 1B Class B N/A	
ILATCHUP	Latchup Performance Above V _{CC} and Below GND at 85°C (Note 3)	±500	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Io absolute maximum rating must be observed.
Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow.
Tested to EIA/JESD78

4. Tested to EIA/JESD22-A114-A, rated to EIA/JESD22-A114-B.

5. Tested to EIA/JESD22-A115-A, rated to EIA/JESD22-A115-B.

6. Tested to JESD22-C101-A.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	Supply Voltage	Operating Data Retention Only	1.65 1.5	5.5 5.5	V
VI	Input Voltage	(Note 7)	0	5.5	V
Vo	Output Voltage (SOT-353/SC70-5/SC-88A Packages)	(HIGH or LOW State)	0	5.5	V
Vo	Output Voltage (SOT-953 Package)	(HIGH or LOW State)	0	V _{CC}	V
T _A	Operating Free-Air Temperature		-55	+125	°C
Δt/ΔV	Input Transition Rise or Fall Rate	$\begin{array}{c} V_{CC} = 2.5 \; V \; \pm 0.2 \; V \\ V_{CC} = 3.0 \; V \; \pm 0.3 \; V \\ V_{CC} = 5.0 \; V \; \pm 0.5 \; V \end{array}$	0 0 0	20 10 5	ns/V

7. Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level.

DC ELECTRICAL CHARACTERISTICS

			Vcc	T,	₄ = 25°	C	$-55^{\circ}C \leq T_{\mu}$	_A ≤ 125°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	High-Level Input Voltage		1.65 to 1.95 2.3 to 5.5	0.75 V _{CC} 0.7 V _{CC}			0.75 V _{CC} 0.7 V _{CC}		V
V _{IL}	Low-Level Input Voltage		1.65 to 1.95 2.3 to 5.5			0.25 V _{CC} 0.3 V _{CC}		0.25 V _{CC} 0.3 V _{CC}	V
V _{OH}	High-Level Output Voltage V _{IN} = V _{IL} or V _{IL}	$\begin{split} I_{OH} &= -100 \; \mu A \\ I_{OH} &= -3 \; mA \\ I_{OH} &= -8 \; mA \\ I_{OH} &= -12 \; mA \\ I_{OH} &= -16 \; mA \\ I_{OH} &= -24 \; mA \\ I_{OH} &= -32 \; mA \end{split}$	1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5	V _{CC} - 0.1 1.29 1.9 2.2 2.4 2.3 3.8	V _{CC} 1.8 2.1 2.4 2.7 2.5 4.0		V _{CC} - 0.1 1.29 1.9 2.2 2.4 2.3 3.8		V
V _{OL}	Low-Level Output Voltage V _{IN} = V _{IH}	$\begin{split} I_{OL} &= 100 \; \mu A \\ I_{OL} &= 3 \; mA \\ I_{OL} &= 8 \; mA \\ I_{OL} &= 12 \; mA \\ I_{OL} &= 16 \; mA \\ I_{OL} &= 24 \; mA \\ I_{OL} &= 32 \; mA \end{split}$	1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5		0.08 0.20 0.22 0.28 0.38 0.42	0.1 0.24 0.3 0.4 0.4 0.55 0.55		0.1 0.24 0.3 0.4 0.4 0.55 0.55	V
I _{IN}	Input Leakage Current	V_{IN} = 5.5 V or GND	0 to 5.5			±0.1		±1.0	μA
I _{OFF}	Power Off Leakage Current (SOT-353/ SC70-5/SC-88A Packages)	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0			1		10	μΑ
I _{CC}	Quiescent Supply Current	$V_{IN} = 5.5 \text{ V or GND}$	5.5			1		10	μA

AC ELECTRICAL CHARACTERISTICS t_R = t_F = 3.0 ns

			V _{CC}	-	Γ _A = 25°C	;	$-55^{\circ}C \leq T_{c}$	_A ≤ 125°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Мах	Unit
t _{PLH}	Propagation Delay	R_L = 1 M Ω , C_L = 15 pF	1.65	2.0	6.9	13.8	2.0	14.5	ns
t _{PHL}	(Figure 3 and 4)	R_L = 1 M Ω , C_L = 15 pF	1.8	2.0	5.7	11.5	2.0	12	
		R_L = 1 M Ω , C_L = 15 pF	2.5 ± 0.2	1.2	4.1	7.0	1.2	7.5	
		$\begin{array}{l} R_{L} = 1 \; M\Omega, C_{L} = 15 \; pF \\ R_{L} = 500 \; \Omega, C_{L} = 50 \; pF \end{array}$	3.3 ± 0.3	0.8 1.2	3.0 3.8	4.8 5.4	0.8 1.2	5.2 5.9	
		$\begin{array}{l} R_{L} = 1 \; M\Omega, C_{L} = 15 \; pF \\ R_{L} = 500 \; \Omega, C_{L} = 50 \; pF \end{array}$	5.0 ± 0.5	0.5 0.8	2.2 2.9	3.5 4.2	0.5 1.0	3.8 4.6	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	V_{CC} = 5.5 V, V_{I} = 0 V or V_{CC}	7.0	pF
C _{PD}	Power Dissipation Capacitance (Note 8)	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC} 10 MHz, V_{CC} = 5.5 V, V_{I} = 0 V or V_{CC}	9 11	pF

 C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

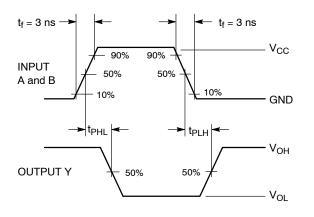
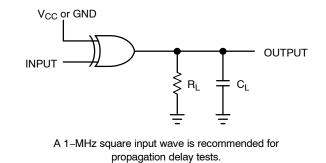
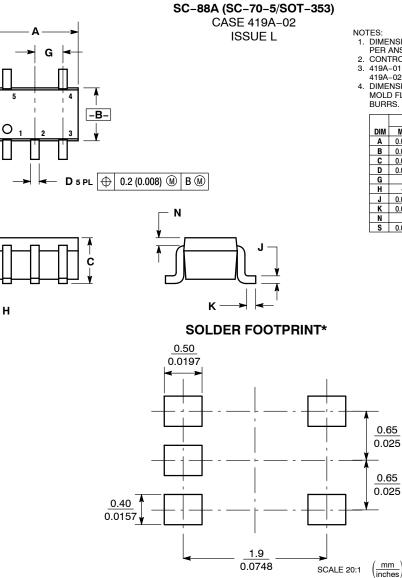




Figure 3. Switching Waveform


Device	Package	Shipping [†]
NL17SZ86DFT2G	SC70-5/SC-88A/SOT-353 (Pb-Free)	3000 / Tape & Reel
NLV17SZ86DFT2G*	SC70-5/SC-88A/SOT-353 (Pb-Free)	3000 / Tape & Reel
NL17SZ86P5T5G	SOT-953 (Pb-Free)	8000 / Tape & Reel

DEVICE ORDERING INFORMATION

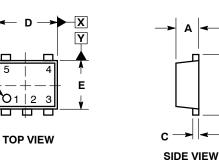
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

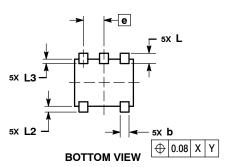
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

S

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

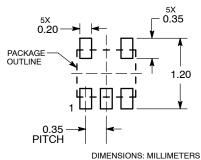

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.


	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026	BSC	0.65 BSC	
Н		0.004		0.10
Ĺ	0.004	0.010	0.10	0.25
Κ	0.004	0.012	0.10	0.30
N	0.008 REF		0.20	REF
S	0.079	0.087	2.00	2.20

PACKAGE DIMENSIONS

SOT-953 CASE 527AE ISSUE E

 $\mathbf{H}_{\mathbf{E}}$


NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME

Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE

MINIMUM THICKNESS OF THE BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

,						
	MILLIMETERS					
DIM	MIN NOM MAX					
Α	0.34	0.37	0.40			
b	0.10	0.15	0.20			
С	0.07	0.12	0.17			
D	0.95	1.00	1.05			
E	0.75	0.80	0.85			
е		0.35 BS	С			
HE	0.95	1.00	1.05			
L	0.175 REF					
L2	0.05	0.10	0.15			
13			0 15			

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and **OD** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.om/site/pdf/Patent-Marking.pdf. SCILLC particle to any products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not designed, intended, or authorized for use as components insystems intended for sugrial inplant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly any cort frequencing or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative