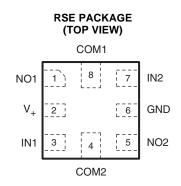


SCDS285A-MARCH 2009-REVISED OCTOBER 2009


0.75-Ω DUAL SPST ANALOG SWITCH WITH 1.8-V COMPATIBLE INPUT LOGIC

FEATURES

- Dual Single-Pole Single-Throw (SPST) Switch
- 1.65-V to 5.5-V Power Supply (V₊)
- Isolation in Powerdown Mode, V₊ = 0
- Low ON-State Resistance (0.75 Ω Typ)
- Excellent ON-State Resistance Matching
- Low Charge Injection
- Low Total Harmonic Distortion (THD)
- High Bandwidth (260 MHz)
- 1.8-V Compatible Control Input Threshold Independent of V₊
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
- 1000-V Charged-Device Model (C101)
- APPLICATIONS
- Cell Phones
- PDAs
- Portable Instrumentation
- Audio and Video Signal Routing
- Portable Media Players
- Communication Circuits
- Computer Peripherals

DESCRIPTION

The TS5A21366 is a dual single-pole single-throw (SPST) analog switch that is designed to operate from 1.65 V to 5.5 V. The device offers a low ON-state resistance and an excellent channel-to-channel ON-state resistance matching. The device has excellent total harmonic distortion (THD) performance and consumes very low power.

The control pin can be connected to a low voltage GPIO allowing it to be controlled by 1.8-V signals.

These features make this device ideal for portable audio applications.

The TS5A21366 is available in a small, space-saving 8-pin DCU or RSE package and is characterized for operation over the free-air temperature range of -40°C to 85°C.

ORDERING INFORMATION⁽¹⁾

T _A	PACK	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
-40°C to 85°C	VSSOP – DCU	Tape and reel	TS5A21366DCUR	JBS_
-40 C 10 85 C	QFN – RSE	Tape and reel	TS5A21366RSER	4F

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCDS285A-MARCH 2009-REVISED OCTOBER 2009

Configuration	Single-pole, single-throw (SPST)
Number of channels	2
ON-state resistance (r _{ON})	0.75 Ω
ON-state resistance match (Δr_{ON})	0.04 Ω
ON-state resistance flatness (r _{ON(flat)})	0.15 Ω
Turn-on/turn-off time (t _{ON} /t _{OFF})	49 ns/243 ns
Charge injection (Q _C)	1.3 pC
Bandwidth (BW)	260 MHz
OFF isolation (O _{ISO})	–62 dB at 1 MHz
Crosstalk (X _{TALK})	–98 dB at 1 MHz
Total harmonic distortion (THD)	0.002%
Power-supply current (I ₊) with $V_{IN} = 1.8 V$	7.6 μΑ
Package option	8-pin QFN (RSE) or VSSOP (DCU)

SUMMARY OF CHARACTERISTICS⁽¹⁾

(1) $V_+ = 5 V, T_A = 25^{\circ}C$

FUNCTION TABLE

IN	NO TO COM, COM TO NO
L	OFF
Н	ON

TERMINAL FUNCTIONS

	TERMINAL						
DCU PIN NO.	RSE PIN NO.	NAME	DESCRIPTION				
1	1	NO1	Switch 1, normally open				
2	8	COM1	vitch 1, common				
3	7	IN2	Switch 2, digital control pin to connect COM to NO				
4	6	GND	Digital ground				
5	5	NO2	Switch 2, normally open				
6	4	COM2	Switch 2, common				
7	3	IN1	Switch 1, digital control pin to connect COM to NO				
8	2	V+	Power supply				

Texas Instruments

www.ti.com

SCDS285A-MARCH 2009-REVISED OCTOBER 2009

ABSOLUTE MAXIMUM RATINGS⁽¹⁾⁽²⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V ₊	Supply voltage range ⁽³⁾		-0.5	6.5	V
V _{NO} V _{COM}	Analog voltage range ⁽³⁾⁽⁴⁾⁽⁵⁾		-0.5	V ₊ + 0.5	V
Ι _Κ	Analog port diode current	$V_{NO}, V_{COM} < 0$	-50		mA
I _{NO}	ON-state switch current	$\frac{1}{10000000000000000000000000000000000$		200	
ICOM	ON-state peak switch current ⁽⁶⁾	$V_{NO,} V_{COM} = 0 \text{ to } V_+$	-400	400	mA
VI	Digital input voltage range ⁽³⁾⁽⁴⁾		-0.5	6.5	V
I _{IK}	Digital input clamp current	V ₁ < 0	-50		mA
I+	Continuous current through V_+			100	mA
I _{GND}	Continuous current through GND		-100	100	mA
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

(3) All voltages are with respect to ground, unless otherwise specified.

(4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(5) This value is limited to 5.5 V maximum.

(6) Pulse at 1-ms duration <10% duty cycle

THERMAL IMPEDANCE

				UNIT
0	Poekage thermal impedance ⁽¹⁾	DCU package	227	°C/W
θ_{JA}	Package thermal impedance ⁽¹⁾	RSE package	253	0/00

(1) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V+	Power supply voltage range ⁽¹⁾	1.65	5.5	V
V _{NO} V _{COM}	Analog signal voltage range	0	V+	V
V _{IN}	Control input voltage range	0	5.5	V
T _A	Ambient temperature	-40	85	°C

(1) V₊ needs to be supplied prior to the control input, refer to the Application Information section.

SCDS285A-MARCH 2009-REVISED OCTOBER 2009

ELECTRICAL CHARACTERISTICS FOR 5-V SUPPLY⁽¹⁾

 V_{\star} = 4.5 V to 5.5 V, T_{A} = –40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDIT		TA	V.	MIN	TYP	MAX	UNIT
Analog Switch								1	
Analog signal range	V _{COM} , V _{NO}					0		V+	V
ON-state resistance	r _{on}	V _{NO} = 2.5 V, I _{COM} = -100 mA,	Switch ON, See Figure 15	25°C Full	4.5 V		0.75	1	Ω
ON-state resistance match between	∆r _{on}	V _{NO} = 2.5 V, I _{COM} = –100 mA,	Switch ON, See Figure 15	25°C Full	4.5 V		0.04	0.1	Ω
channels ON-state resistance flatness	r _{on(flat)}	$V_{NO} = 1 \text{ V}, 1.5 \text{ V}, 2.5 \text{ V},$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 15	25°C Full	4.5 V		0.15	0.25	Ω
lianess		V _{NO} = 1 V,		Full		-10	1.4	0.25	
NO OFF leakage current	I _{NO(OFF)}	$V_{COM} = 4.5 \text{ V},$ or $V_{NO} = 4.5 \text{ V},$ $V_{COM} = 1 \text{ V},$	Switch OFF, See Figure 16	25°C	5.5 V	-235		235	nA
	I _{NO(PWROFF)}	V _{NO} = 0 to 5.5 V,		Full	0 V -	-5	0.06	5	μA
	'NO(PWROFF)	$V_{COM} = 5.5 V \text{ to } 0,$		1 011	01	-10		10	μι
COM OFF leakage current	$V_{NO} = 4.5 V$ I _{COM(OFF)} or	$V_{COM} = 1 V,$		25°C	-	-10	1.4	10	
		or V _{COM} = 4.5 V,	Switch OFF, See Figure 16	Full	5.5 V	-235		235	nA
		V _{NO} = 0 to 5.5 V,		25°C	0 V	-5	0.06	5	μA
	ICOM(PWROFF)	$V_{COM} = 5.5 V \text{ to } 0,$		Full	00	-10		10	
		$V_{NO} = 1 V,$		25°C		-5	1.33	5	
NO ON leakage current	I _{NO(ON)}	$V_{COM} = Open,$ or $V_{NO} = 4.5 V,$ $V_{COM} = Open,$	Switch ON, See Figure 17	Full	5.5 V	-50		50	nA
		$V_{COM} = 1 V,$		25°C		-5	1.33	5	
COM ON leakage current	I _{COM(ON)}	$V_{NO} = Open,$ or $V_{COM} = 4.5 V,$ $V_{NO} = Open,$	Switch ON, See Figure 17	Full	5.5 V	-50		50	nA
Digital Control Inputs	s (IN1, IN2) ⁽²⁾								
Input logic high	V _{IH}			Full	5.5 V	1.05		5.5	V
Input logic low	V _{IL}			Full	5.5 V	0		0.6	V
Input leakage current	I _{IH} , I _{IL}	$V_I = 1.95 V \text{ or GND}$		Full	5.5 V	-0.6		0.6	μA
Input resistance	r _{IN}	V _I = 1.95 V		Full	5.5 V		6		MΩ

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

 (2) All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCDS285A-MARCH 2009-REVISED OCTOBER 2009

ELECTRICAL CHARACTERISTICS FOR 5-V SUPPLY (continued)

 $V_{+} = 4.5$ V to 5.5 V, $T_{A} = -40^{\circ}$ C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	TA	V.	MIN	TYP	MAX	UNIT
Dynamic		·							
				25°C	5 V	39	49	72	
Turn-on time	t _{ON}	$V_{COM} = V_+, \\ R_L = 50 \ \Omega,$	C _L = 35 pF, See Figure 19	Full	4.5 V to 5.5 V	28		97	ns
				25°C	5 V	168	243	318	
Turn-off time	t _{OFF}	$V_{COM} = V_+, \\ R_L = 50 \ \Omega,$	C _L = 35 pF, See Figure 19	Full	4.5 V 5.5 V	178		323	ns
Charge injection	Q _C	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 23	25°C	5 V		1.3		рС
NO OFF capacitance	C _{NO(OFF)}	$V_{NO} = V_{+} \text{ or GND},$ Switch OFF,	See Figure 18	25°C	5 V		19		pF
COM OFF capacitance	C _{COM(OFF)}	$V_{NO} = V_+ \text{ or GND},$ Switch OFF,	See Figure 18	25°C	5 V		17		pF
NO ON capacitance	C _{NO(ON)}	$V_{NO} = V_+ \text{ or GND},$ Switch ON,	See Figure 18	25°C	5 V		33		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_+ \text{ or GND},$ Switch ON,	See Figure 18	25°C	5 V		33		pF
Digital input capacitance	CI	$V_I = V_+ \text{ or } GND,$	See Figure 18	25°C	5 V		2.5		pF
Power supply rejection ratio	PSRR	$ f = 10 \text{ kHz}, \\ V_{COM} = 1 \text{ Vrms}, \\ R_L = 50 \Omega, $	C _L = 15 pF, See Figure 25	25°C	5 V		-84		dB
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	5 V		260		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch OFF, See Figure 21	25°C	5 V		-62		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch ON, See Figure 22	25°C	5 V		-98		dB
Total harmonic distortion	THD	$\begin{aligned} R_{L} &= 600 \ \Omega, \\ C_{L} &= 15 \ pF, \end{aligned}$	f = 20 Hz to 20 kHz, See Figure 24	25°C	5 V		0.002		%
Supply		-			. 1				
Positive supply	1	V ₁ = 1.95 V or GND	Switch ON or	25°C	5.5 V		7.6	9	
current	I+		OFF	Full	0.5 V			10	μA

www.ti.com

ELECTRICAL CHARACTERISTICS FOR 3.3-V SUPPLY⁽¹⁾

 $V_{+} = 3 \text{ V}$ to 3.6 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	TA	V.	MIN	TYP	MAX	UNIT
Analog Switch	·								
Analog signal range	V _{COM} , V _{NO}					0		V+	V
ON-state resistance	r _{on}	V _{NO} = 2 V, I _{COM} = -100 mA,	Switch ON, See Figure 15	25°C Full	3 V -		1.1	1.5 1.8	Ω
ON-state resistance match between channels	Δr _{on}	V _{NO} = 2 V, 0.8 V I _{COM} = -100 mA,	Switch ON, See Figure 15	25°C Full	3 V		0.045	0.1 0.1	Ω
ON-state resistance flatness	r _{on(flat)}	V _{NO} = 2 V, 0.8 V, I _{COM} = -100 mA,	Switch ON, See Figure 15	25°C Full	3 V -		0.15	0.25 0.25	Ω
NO OFF leakage current	I _{NO(OFF)}		Switch OFF, See Figure 16	25°C	3.6 V	-5 -160	0.9	5 160	nA
	I _{NO(PWROFF)}	$V_{NO} = 0 \text{ to } 3.6 \text{ V},$ $V_{COM} = 3.6 \text{ V to } 0,$		Full	0 V	-5 -10	0.03	5 10	μA
COM OFF leakage current		$V_{NO} = 3 V,$		25°C		-5	0.9	5	
	I _{COM(OFF)}	$V_{COM} = 1 V,$	Switch OFF, See Figure 16	Full	3.6 V	-160		160	nA
		V _{NO} = 0 to 3.6 V,		25°C	ov	-5	0.03	5	μA
	ICOM(PWROFF)	$V_{COM} = 3.6 V \text{ to } 0,$		Full	0 0	-10		10	μΛ
		$V_{NO} = 1 V,$		25°C		-2	1	2	
NO ON leakage current	I _{NO(ON)}	$V_{COM} = Open,$ or $V_{NO} = 3 V,$ $V_{COM} = Open,$	Switch ON, See Figure 17	Full	3.6 V	-20		20	nA
		$V_{COM} = 1 V,$		25°C		-2	1	2	
COM ON leakage current	I _{COM(ON)}	$V_{NO} = Open,$ or $V_{COM} = 3 V,$ $V_{NO} = Open,$	See Figure 17	Full	3.6 V	-20		20	nA
Digital Control Inputs	s (IN1, IN2) ⁽²⁾				·			1	
Input logic high	V _{IH}			Full	3.6 V	1.05		5.5	V
Input logic low	V _{IL}			Full	3.6 V	0		0.6	V
Input leakage current	I _{IH} , I _{IL}	$V_I = 1.95 V \text{ or GND}$		Full	3.6 V	-0.6		0.6	μA
Input resistance	r _{IN}	V _I = 1.95 V		Full	3.6 V		6		MΩ

The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
 All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCDS285A-MARCH 2009-REVISED OCTOBER 2009

ELECTRICAL CHARACTERISTICS FOR 3.3-V SUPPLY (continued)

 V_{\star} = 3 V to 3.6 V, T_{A} = –40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	TA	V.	MIN	TYP	MAX	UNIT
Dynamic									
			0 25 -5	25°C	3.3 V	66	83	133	
Turn-on time	t _{ON}	$V_{COM} = V_+, \\ R_L = 50 \ \Omega,$	C _L = 35 pF, See Figure 19	Full	3 V to 3.6 V	43		178	ns
		V – V	C _L = 35 pF,	25°C	3.3 V	138	247	306	
Turn-off time	t _{OFF}	$V_{COM} = V_+, \\ R_L = 50 \ \Omega,$	See Figure 19	Full	3 V to 3.6 V	204		329	ns
Charge injection	Q _C	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 23	25°C	3.3 V		1.3		рС
NO OFF capacitance	C _{NO(OFF)}	$V_{NO} = V_{+} \text{ or GND},$ Switch OFF,	See Figure 18	25°C	3.3 V		19		pF
COM OFF capacitance	C _{COM(OFF)}	$V_{COM} = V_+ \text{ or GND},$ Switch OFF,	See Figure 18	25°C	3.3 V		17		pF
NO ON capacitance	C _{NO(ON)}	$V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 18	25°C	3.3 V		30		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_+ \text{ or GND},$ Switch ON,	See Figure 18	25°C	3.3 V		30		pF
Digital input capacitance	Cı	$V_I = V_+ \text{ or } GND,$	See Figure 18	25°C	3.3 V		2.5		pF
Power supply rejection ratio	PSRR	$ f = 10 \text{ kHz}, \\ V_{COM} = 1 \text{ Vrms}, \\ R_L = 50 \Omega, $	C _L = 15 pF, See Figure 25	25°C	3.3 V		-84		dB
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	3.3 V		260		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch OFF, See Figure 21	25°C	3.3 V		-62		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch ON, See Figure 22	25°C	3.3 V		-99		dB
Total harmonic distortion	THD	$ \begin{aligned} R_{L} &= 600 \; \Omega, \\ C_{L} &= 15 \; pF, \end{aligned} $	f = 20 Hz to 20 kHz, See Figure 24	25°C	3.3 V		0.004		%
Supply									
Positive supply current	I+	V _I = 1.95 V or GND	Switch ON or OFF	25°C Full	3.6 V		6.8	9 10	μA

www.ti.com

ELECTRICAL CHARACTERISTICS FOR 2.5-V SUPPLY⁽¹⁾

 V_{\star} = 2.3 V to 2.7 V, T_{A} = –40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	TA	V.	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	V _{COM} , V _{NO}					0		V+	V
ON-state resistance	r _{on}	V _{NO} = 1.8 V, I _{COM} = –8 mA,	Switch ON, See Figure 15	25°C Full	2.3 V —		1.2	2.1 2.7	Ω
ON-state resistance match between channels	∆r _{on}	V _{NO} = 1.8 V, 0.8 V, I _{COM} = -8 mA,	Switch ON, See Figure 15	25°C Full	2.3 V		0.045	0.15 0.15	Ω
ON-state resistance flatness	r _{on(flat)}	$V_{NO} = 1.8 V, 0.8 V,$ $I_{COM} = -8 mA,$	Switch ON, See Figure 15	25°C Full	2.3 V		0.4	0.6 0.6	Ω
NO OFF leakage current	I _{NO(OFF)}	$\begin{array}{l} V_{NO} = 0.5 \ V, \\ V_{COM} = 2.3 \ V, \\ or \\ V_{NO} = 2.3 \ V, \\ V_{COM} = 0.5 \ V, \end{array}$	Switch OFF, See Figure 16	25°C	2.7 V	8 136	0.7	8 136	nA
	I _{NO(PWROFF)}	$V_{NO} = 0 \text{ to } 2.7 \text{ V},$ $V_{COM} = 2.7 \text{ V to } 0,$		Full	0 V —	-5 -10	0.02	5 10	μA
COM OFF leakage current		V _{NO} = 2.3 V,		25°C		-8	0.7	8	
	I _{COM(OFF)}	$V_{COM} = 0.5 V,$	Switch OFF, See Figure 16	Full	2.7 V	-136		136	nA
		V _{NO} = 0 to 2.7 V,		25°C	0.1/	-5	0.02	5	۵
	I _{COM(PWROFF)}	$V_{COM} = 2.7 V \text{ to } 0,$		Full	0 V –	-10		10	μA
		V _{NO} = 0.5 V,		25°C		-2	0.3	2	
NO ON leakage current	I _{NO(ON)}	$\label{eq:VCOM} \begin{array}{l} V_{COM} = Open, \\ or \\ V_{NO} = 2.3 \ V, \\ V_{COM} = Open, \end{array}$	Switch ON, See Figure 17	Full	2.7 V	-15		15	nA
		$V_{COM} = 0.5 V,$		25°C		-2	0.3	2	
COM ON leakage current	I _{COM(ON)}	V_{NO} = Open, or V_{COM} = 2.3 V, V_{NO} = Open,	Switch ON, See Figure 17	Full	2.7 V	-15		15	nA
Digital Control Inputs	s (IN1, IN2) ⁽²⁾	r			· I			1	
Input logic high	V _{IH}			Full	2.7 V	1.05		5.5	V
Input logic low	V _{IL}			Full	2.7 V	0		0.6	V
Input leakage current	I _{IH} , I _{IL}	V _I = 1.95 V or GND		Full	2.7 V	-0.6		0.6	μA
Input resistance	r _{IN}	V _I = 1.95 V		Full	2.7 V		6		MΩ

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

 (2) All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

ELECTRICAL CHARACTERISTICS FOR 2.5-V SUPPLY (continued)

 V_{\star} = 2.3 V to 2.7 V, T_{A} = –40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS			V.	MIN	TYP	MAX	UNIT
Dynamic	·								
				25°C	2.5 V	101	137	222	
Turn-on time	t _{ON}		C _L = 35 pF, See Figure 19	Full	2.3 V to 2.7 V	68		288	ns
				25°C	2.5 V	148	264	333	
Turn-off time	t _{OFF}	$V_{COM} = V_+, \\ R_L = 50 \ \Omega,$	C _L = 35 pF, See Figure 19	Full	2.3 V to 2.7 V	197		367	ns
Charge injection	Q _C	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 23	25°C	2.5 V		1.3		рС
NO OFF capacitance	C _{NO(OFF)}	$V_{NO} = V_+ \text{ or GND},$ Switch OFF,	See Figure 18	25°C	2.5 V		19		pF
COM OFF capacitance	C _{COM(OFF)}	$V_{NO} = V_+ \text{ or GND},$ Switch OFF,	See Figure 18	25°C	2.5 V		17		pF
NO ON capacitance	C _{NO(ON)}	$V_{NO} = V_+ \text{ or GND},$ Switch ON,	See Figure 18	25°C	2.5 V		27.5		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_+ \text{ or GND},$ Switch ON,	See Figure 18	25°C	2.5 V		27.5		pF
Digital input capacitance	Cı	$V_I = V_+ \text{ or } GND,$	See Figure 18	25°C	2.5 V		2.5		pF
Power supply rejection ratio	PSRR	f = 10 kHz, V _{COM} = 1 Vrms, R _L = 50 Ω,	C _L = 15 pF, See Figure 25	25°C	2.5 V		-84		dB
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	2.5 V		260		MHz
OFF isolation	O _{ISO}	$ \begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, \end{array} $	Switch OFF, See Figure 21	25°C	2.5 V		-61		dB
Crosstalk	X _{TALK}	$\begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, \end{array}$	Switch ON, See Figure 22	25°C	2.5 V		-99		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 15 \text{ pF},$	f = 20 Hz to 20 kHz, See Figure 24	25°C	2.5 V		0.011		%
Supply									
Positive supply	1	V ₁ = 1.95 V or GND	Switch ON or	25°C	2.7 V		6.6	9	^
current	I+		OFF	Full	2.1 V			10	μA

www.ti.com

ELECTRICAL CHARACTERISTICS FOR 1.8-V SUPPLY⁽¹⁾

 V_{+} = 1.65 V to 1.95 V, T_{A} = -40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS			V.	MIN	TYP	MAX	UNIT	
Analog Switch				T _A	· ·			I		
Analog signal range	V _{COM} , V _{NO}								V	
ON-state resistance r _{on}		V _{NO} = 0.6 V, 1.5 V, I _{COM} = -2 mA,	Switch ON, See Figure 15	25°C Full	1.65 V —		1.6	4	Ω	
ON-state resistance		·com _ ····,	eee ligale le	25°C			0.045	0.2		
match between channels	∆r _{on}	$V_{NO} = 1.5 V,$ $I_{COM} = -2 mA,$	Switch ON, See Figure 15	Full	1.65 V		0.043	0.2	Ω	
ON-state resistance		V _{NO} = 0.6 V, 1.5 V,	Switch ON,	25°C			1.7	2.8		
flatness	r _{on(flat)}	$I_{COM} = -2 \text{ mA},$	See Figure 15	Full	1.65 V —			3	Ω	
NO OFF leakage current		V _{NO} = 0.3 V,				-10	0.5	10		
	I _{NO(OFF)} akage	$V_{COM} = 1.65 V,$ or $V_{NO} = 1.65 V,$ $V_{COM} = 0.3 V,$	Switch OFF, See Figure 16	25°C	1.95 V	-30		30	nA	
	I _{NO(PWROFF)}	$V_{NO} = 0$ to 1.95 V, $V_{COM} = 1.95$ V to 0,		Full	0 V —	-5	0.02	5	μA	
				Fui	0 v	-10		10	μι	
COM OFF leakage current		V _{NO} = 1.65 V,		25°C		-10	0.5	10	nA	
	I _{COM(OFF)}	$\begin{array}{l} V_{COM} = 0.3 \ V, \\ or \\ V_{NO} = 0.3 \ V, \\ V_{COM} = 1.65 \ V, \end{array}$	Switch OFF, See Figure 16	Full	1.95 V	-30		30		
	I _{COM(PWROFF)}	V _{NO} = 0 to 1.95 V,		25°C	0.14	-5	0.02	5	•	
		$V_{COM} = 1.95 V \text{ to } 0,$		Full	0 V —	-10		10	μA	
			V _{NO} = 0.3 V,		25°C		-2	0.2	2	
NO ON leakage current	I _{NO(ON)}	$\label{eq:VCOM} \begin{array}{l} V_{COM} = Open, \\ or \\ V_{NO} = 1.65 \ V, \\ V_{COM} = Open, \end{array}$	Switch ON, See Figure 17	Full	1.95 V	-15		15	nA	
	V _{COM}	$V_{COM} = 0.3 V,$		25°C		-2	0.2	2		
COM ON leakage current		$V_{NO} = Open,$ or $V_{COM} = 1.65 V,$ $V_{NO} = Open,$	COM = 1.65 V, See Figure 17		1.95 V	-15		15	nA	
Digital Control Inputs	s (IN1, IN2) ⁽²⁾	r			· I					
Input logic high	V _{IH}			Full	1.95 V	1.05		5.5	V	
Input logic low	V _{IL}			Full	1.95 V	0		0.6	V	
Input leakage current	I _{IH} , I _{IL}	$V_I = 1.95 V \text{ or GND}$		Full	1.95 V	-0.6		0.6	μA	
Input resistance	r _{IN}	V _I = 1.95 V		Full	1.95 V		6		MΩ	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

 (2) All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

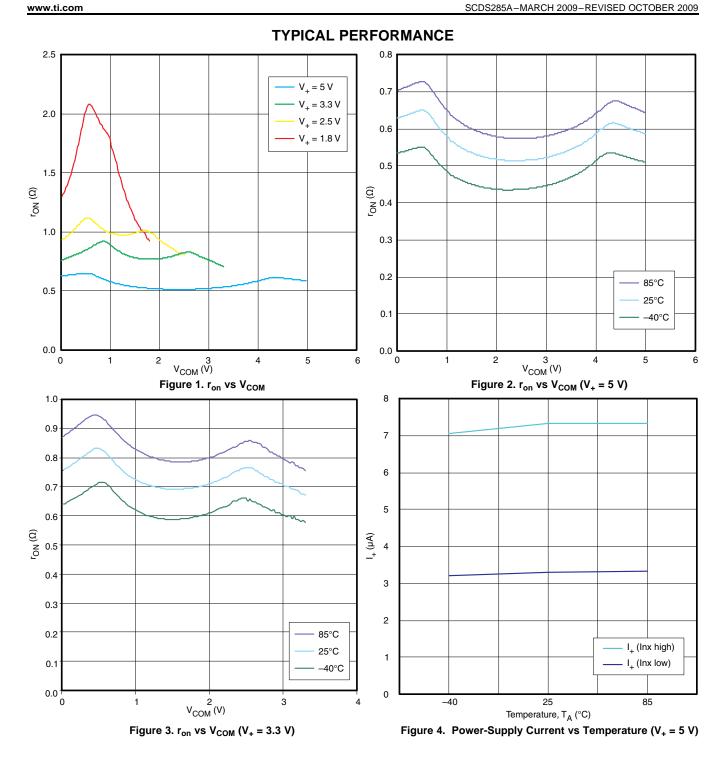
SCDS285A-MARCH 2009-REVISED OCTOBER 2009

ELECTRICAL CHARACTERISTICS FOR 1.8-V SUPPLY (continued)

 V_{+} = 1.65 V to 1.95 V, T_{A} = -40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	TA	V+	MIN	TYP	MAX	UNIT	
Dynamic									
				25°C	1.8 V	198	297	448	
Turn-on time	t _{ON}	$V_{COM} = V_+, \\ R_L = 50 \ \Omega,$	C _L = 35 pF, See Figure 19	Full	1.65 V to 1.95 V	136		620	ns
				25°C	1.8 V	225	308	430	
Turn-off time	t _{OFF}	$V_{COM} = V_+,$ $R_L = 50 \ \Omega,$	$C_L = 35 \text{ pF},$ See Figure 19	Full	1.65 V to 1.95 V	204		514	ns
Charge injection	Q _C	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See <mark>Figure 23</mark>	25°C	1.8 V		1.4		рС
NO OFF capacitance	C _{NO(OFF)}	$V_{NO} = V_{+} \text{ or GND},$ Switch OFF,	See Figure 18	25°C	1.8 V		19		pF
COM OFF capacitance	C _{COM(OFF)}	$V_{NO} = V_+ \text{ or GND},$ Switch OFF,	See Figure 18	25°C	1.8 V		17		pF
NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	$V_{NO} = V_+ \text{ or GND},$ Switch ON,	See Figure 18	25°C	1.8 V		27.5		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_+ \text{ or GND},$ Switch ON,	See Figure 18	25°C	1.8 V		27.5		pF
Digital input capacitance	Cl	$V_1 = V_+ \text{ or } GND,$	See Figure 18	25°C	1.8 V		2.5		pF
Power supply rejection ratio	PSRR	$ f = 10 \text{ kHz}, \\ V_{COM} = 1 \text{ Vrms}, \\ R_L = 50 \Omega, $	C _L = 15 pF, See Figure 25	25°C	1.8 V		-78		dB
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	1.8 V		260		MHz
OFF isolation	O _{ISO}	$ \begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, \end{array} $	Switch OFF, See <mark>Figure 2</mark> 1	25°C	1.8 V		-59		dB
Crosstalk	X _{TALK}	$\begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, \end{array}$	Switch ON, See Figure 22	25°C	1.8 V		-101		dB
Total harmonic distortion	THD	$ \begin{aligned} R_L &= 600 \ \Omega, \\ C_L &= 15 \ pF, \end{aligned} $	f = 20 Hz to 20 kHz, See Figure 24	25°C	1.8 V		0.001		%
Supply		·		·					
Positive supply		V ₁ = 1.95 V or GND	Switch ON or	25°C	4.05.14		3.6	9	^
current	I+	v1 = 1.95 V OF GND	OFF	Full	1.95 V			10	μA

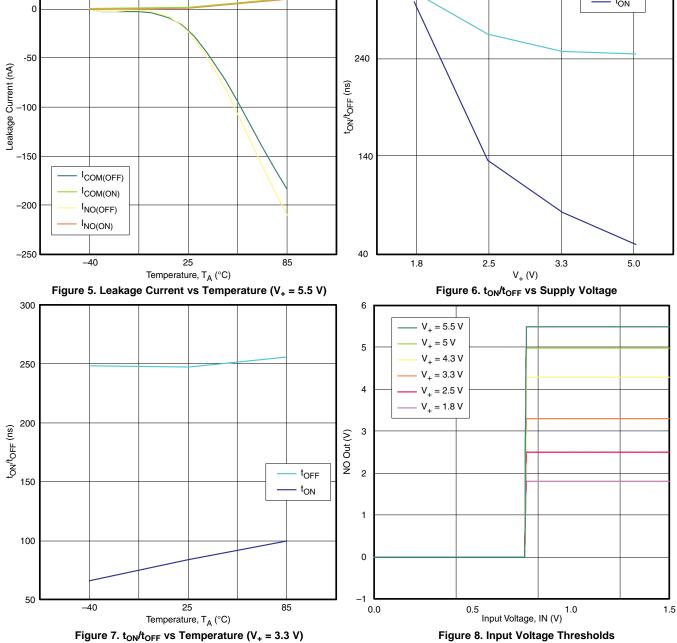
www.ti.com


PARAMETER DESCRIPTION

SYMBOL	DESCRIPTION
V _{COM}	Voltage at COM
V _{NO}	Voltage at NO
r _{on}	Resistance between COM and NO ports when the channel is ON
r _{on(flat)}	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open
I _{COM(OFF)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the OFF state
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the ON state and the output (NO) open
V _{IH}	Minimum input voltage for logic high for the control input (IN)
V _{IL}	Maximum input voltage for logic low for the control input (IN)
VI	Voltage at the control input (IN)
I _{IH} , I _{IL}	Leakage current measured at the control input (IN)
t _{ON}	Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON.
t _{OFF}	Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF.
Q _C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_{COM}$, C_L is the load capacitance and ΔV_{COM} is the change in analog output voltage.
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NO to COM) is ON
C _{COM(OFF)}	Capacitance at the COM port when the corresponding channel (COM to NO) is OFF
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NO) is ON
CI	Capacitance of control input (IN)
O _{ISO}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NO to COM) in the OFF state.
X _{TALK}	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NO1 to NO2). This is measured in a specific frequency and in dB.
BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain.
THD	Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.
I ₊	Static power-supply current with the control (IN) pin at V+ or GND
ΔI_+	This is the increase in I ₊ for each control (IN) input that is at the specified voltage, rather than at V ₊ or GND.

TS5A21366

SCDS285A-MARCH 2009-REVISED OCTOBER 2009


50

www.ti.com

SCDS285A-MARCH 2009-REVISED OCTOBER 2009

340 t_{OFF} t_{ON} 240 ton/topp (ns) 140

SCDS285A-MARCH 2009-REVISED OCTOBER 2009

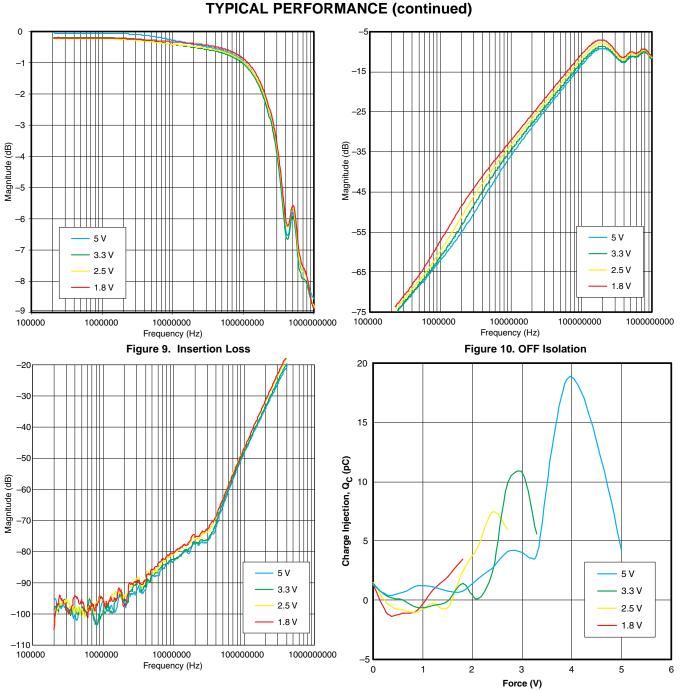
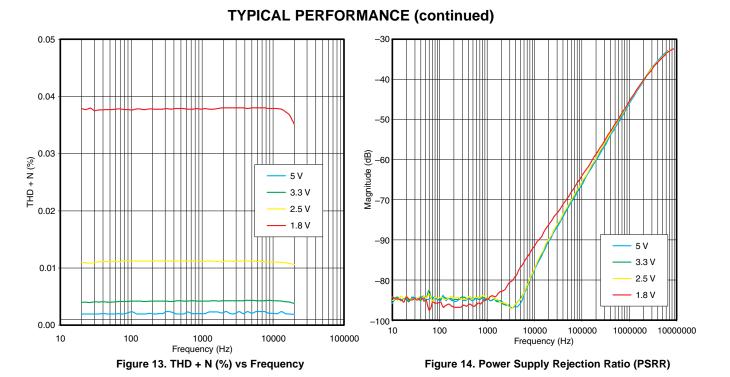



Figure 11. Crosstalk

Figure 12. Charge Injection (Q_C) vs Bias Voltage

SCDS285A-MARCH 2009-REVISED OCTOBER 2009

SCDS285A-MARCH 2009-REVISED OCTOBER 2009

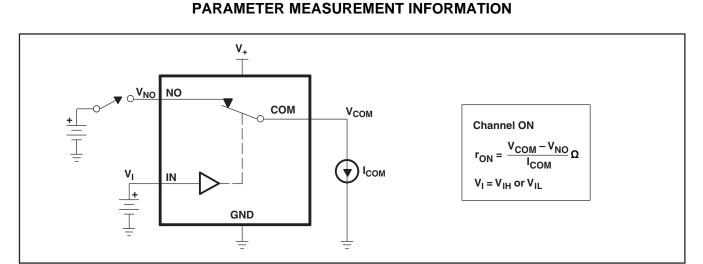


Figure 15. ON-State Resistance (ron)

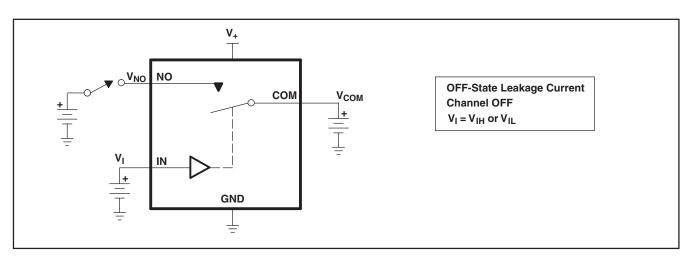
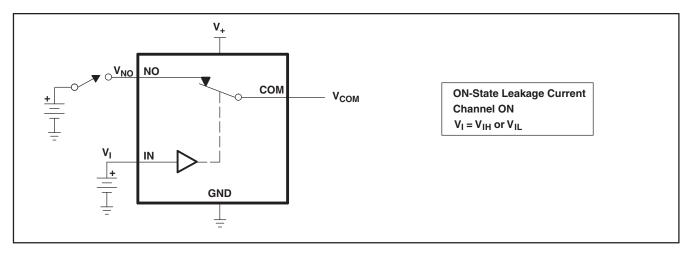



Figure 16. OFF-State Leakage Current (I_{COM(OFF)}, I_{NO(OFF)}, I_{COM(PWROFF)}, I_{NOC(PWR(FF)})

SCDS285A-MARCH 2009-REVISED OCTOBER 2009

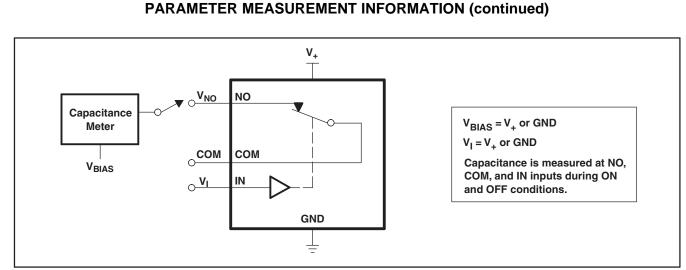
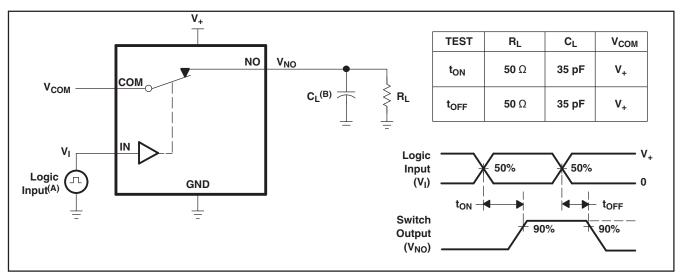



Figure 18. Capacitance (C_I, C_{COM(OFF)}, C_{COM(ON)}, C_{NO(OFF)}, C_{NO(ON)})

A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 5 ns, t_f \leq 5 ns.

B. C_L includes probe and jig capacitance.

Figure 19. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

SCDS285A-MARCH 2009-REVISED OCTOBER 2009

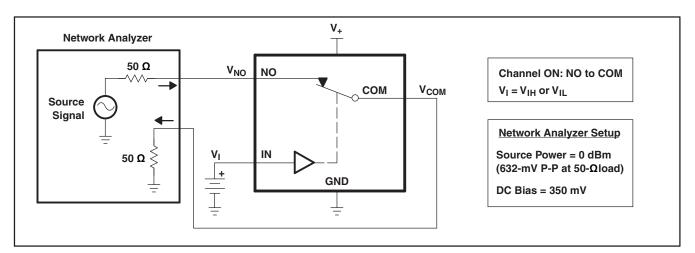
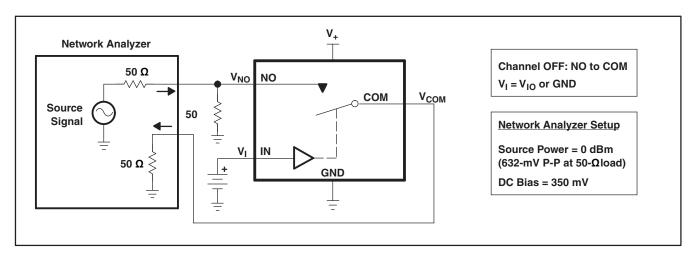
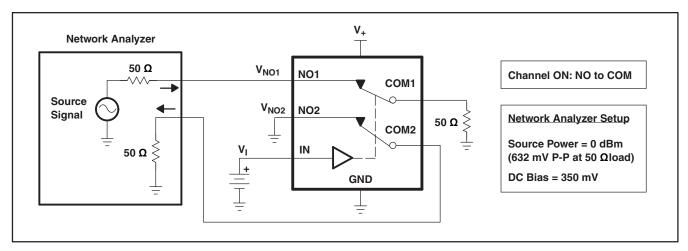




Figure 20. Bandwidth (BW)

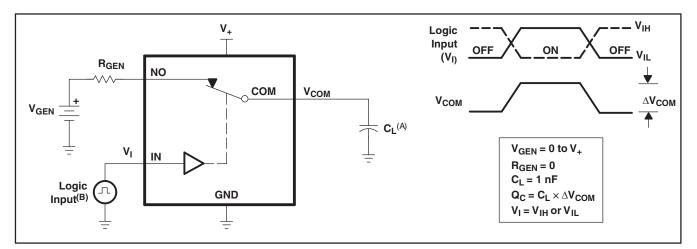
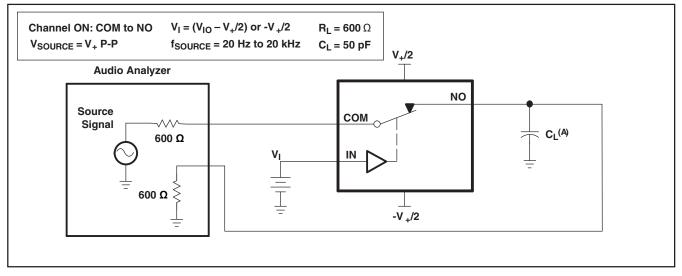

Figure 21. OFF Isolation (O_{ISO})

Figure 22. Crosstalk (X_{TALK})


www.ti.com

- A. C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 5 ns, t_f \leq 5 ns.

Figure 23. Charge Injection (Q_C)

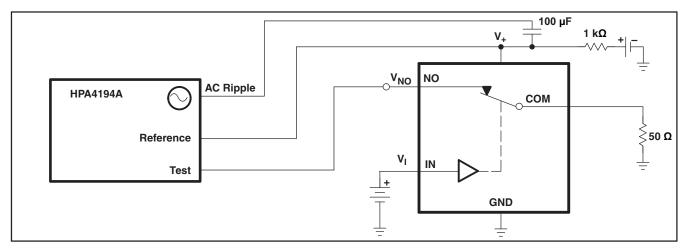

A. C_L includes probe and jig capacitance.

Figure 24. Total Harmonic Distortion (THD)

SCDS285A-MARCH 2009-REVISED OCTOBER 2009

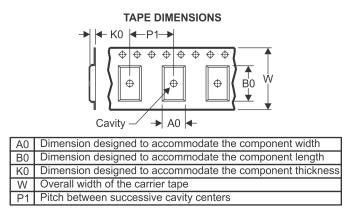
PARAMETER MEASUREMENT INFORMATION (continued)

www.ti.com

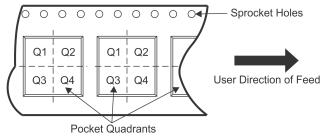
APPLICATION INFORMATION

Independent of V₊, low-voltage GPIO-compatible control inputs

TS5A21366 integrates special control inputs with low threshold allowing the device to be controlled by 1.8-V signals. The thresholds are fixed and independent of the supply value (V₊). The low threshold (V_{IH}, V_{IL}) of the control inputs (IN1, IN2) is achieved by use of an internal bias circuit. To avoid an increased quiescent current (I₊) condition, proper power sequencing must be followed to ensure that the bias circuitry is powered up prior to applying voltage on the I/Os. The proper sequence is for the V₊ pin to be brought up to V₊ before the control inputs (IN1, IN2) are allowed to go to a high level.


PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

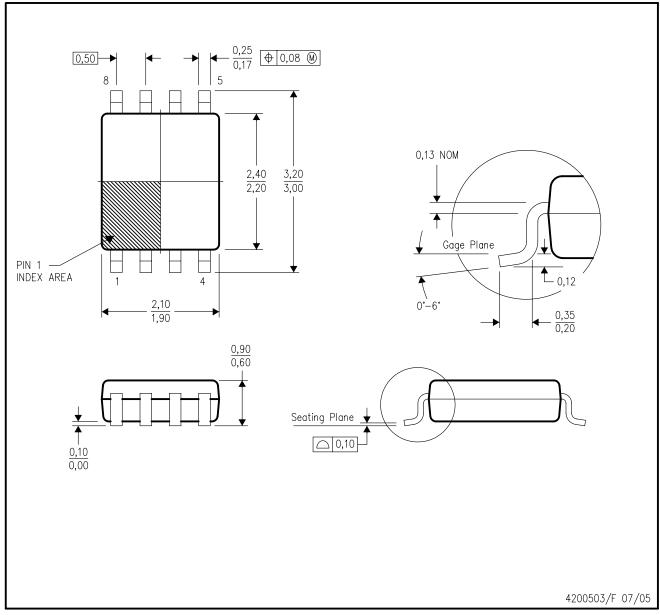
*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A21366DCUR	US8	DCU	8	3000	180.0	9.0	2.05	3.3	1.0	4.0	8.0	Q3
TS5A21366DCUR	US8	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
TS5A21366DCURG4	US8	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
TS5A21366RSER	UQFN	RSE	8	3000	180.0	8.4	1.7	1.7	0.7	4.0	8.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

18-Aug-2014

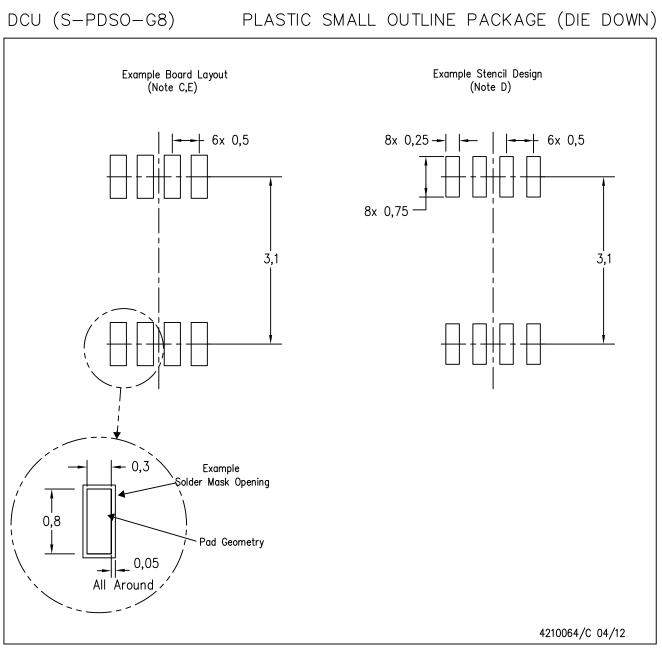


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A21366DCUR	US8	DCU	8	3000	182.0	182.0	20.0
TS5A21366DCUR	US8	DCU	8	3000	202.0	201.0	28.0
TS5A21366DCURG4	US8	DCU	8	3000	202.0	201.0	28.0
TS5A21366RSER	UQFN	RSE	8	3000	202.0	201.0	28.0

DCU (R-PDSO-G8)

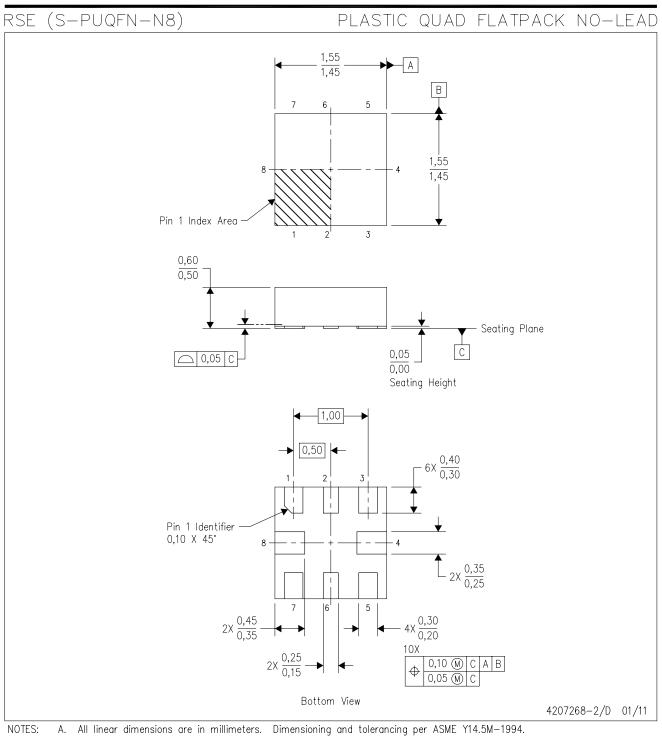
PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

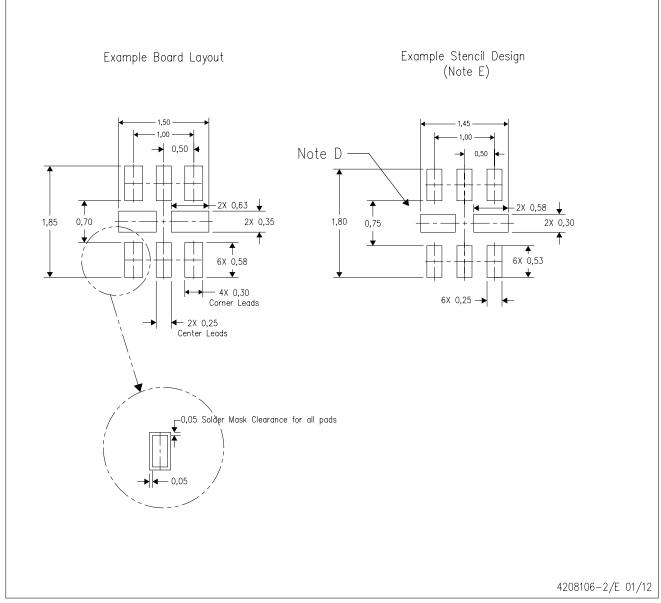
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

D. Falls within JEDEC MO-187 variation CA.



- NOTES: A. All linear dimensions are in millimeters. В. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA



B. This drawing is subject to change without notice.
C. QFN (Quad Flatpack No-Lead) package configuration.
D. This package complies to JEDEC MO-288 variation UECD.

RSE (S-PUQFN-N8)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication $\mathsf{IPC-7351}$ is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated