
LM431SA / LM431SB / LM431SC Programmable Shunt Regulator

Features

- Programmable Output Voltage to 36 V
- Low Dynamic Output Impedance: 0.2 Ω (Typical)
- Sink Current Capability of 1.0 to 100 mA
- Equivalent Full-Range Temperature Coefficient of 50 ppm/°C(Typical)
- Temperature Compensated for Operation Over Full Rated Operating Temperature Range
- Low Output Noise Voltage
- Fast Turn-on Response

Description

The LM431SA / LM431SB / LM431SC are three-terminal the output adjustable regulators with thermal stability over operating temperature range. The output voltage can be set any value between V_{REF} (approximately 2.5 V) and 36 V with two external resistors. These devices have a typical dynamic output impedance of 0.2 Ω . Active output circuit provides a sharp turn-on characteristic, making these devices excellent replacement for Zener diodes in many applications.

Ordering Information

Product Number	Output Voltage Tolerance	Operating Temperature	Top Mark	Package	Packing Method		
LM431SACMFX			43A	SOT-23F 3L			
LM431SACM3X	2%	-	43L	SOT-23 3L			
LM431SACM32X		-	43G	SOT-23 3L			
LM431SBCMLX			43B	SOT-89 3L			
LM431SBCMFX	1%		43B	SOT-23F 3L			
LM431SBCM3X	1%	-25 to +85°C	43M	SOT-23 3L			
LM431SBCM32X		-	43H	SOT-23 3L	- Tape and Reel		
LM431SCCMLX			43C	SOT-89 3L			
LM431SCCMFX	0.5%		43C	SOT-23 3L			
LM431SCCM3X	0.5%		43N	SOT-23F 3L			
LM431SCCM32X			43J	SOT-23 3L			
LM431SAIMFX	2%	-40 to +85°C	43AI	SOT-23F 3L			

June 2013

Block Diagram

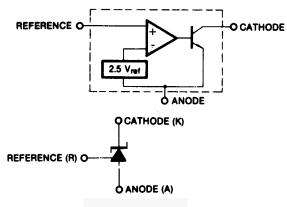


Figure 1. Block Diagram

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	P	Value	Unit	
V _{KA}	Cathode Voltage		37	V
I _{KA}	Cathode current Range (Con	ntinuous)	-100 to +150	mA
I _{REF}	Reference Input Current Rai	nge	-0.05 to +10.00	mA
	The second Desciptions of	ML Suffix Package (SOT-89)	220	
$R_{ extsf{ heta}JA}$	Thermal Resistance Junction-Air ^(1,2)	MF Suffix Package (SOT-23F)	350	°C/W
		M32, M3 Suffix Package (SOT-23)	400	
		ML Suffix Package (SOT-89)	560	
PD	Power Dissipation ^(3,4)	MF Suffix Package (SOT-23F)	350	mW
		M32, M3 Suffix Package (SOT-23)	310	
TJ	Junction Temperature	•	150	°C
T _{OPR}	Operating Temperature Ran	-25 ~ +85	°C	
T _{STG}	Storage Temperature Range	9	-65 ~ +150	°C

Notes:

- 1. Thermal resistance test board Size: 1.6 mm x 76.2 mm x 114.3 mm (1S0P)
 - JEDEC Standard: JESD51-3, JESD51-7.
- 2. Assume no ambient airflow.
- 3. $T_{JMAX} = 150^{\circ}C$; ratings apply to ambient temperature at $25^{\circ}C$.
- 4. Power dissipation calculation: $P_D = (T_J T_A) / R_{\theta JA}$.

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Unit
V _{KA}	Cathode Voltage	V _{REF}	36	V
I _{KA}	Cathode Current	1	100	mA

Electrical Characteristics

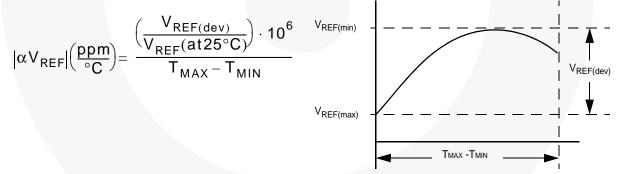
Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Cumbal Door	Deverseter	O a waliti a wa		LM431SA			LM431SB			LM431SC			11
Symbol Parameter		Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{REF}	Reference Input Voltage	$V_{KA} = V_{REF}$, $I_{KA} = 10 \text{ mA}$		2.450	2.500	2.550	2.470	2.495	2.520	2.482	2.495	2.508	V
⊿V _{REF} /⊿T	Deviation of Reference Input Voltage Over-	$V_{KA} = V_{REF},$ $I_{KA} = 10 \text{ mA}$ $T_{MIN} \le T_A \le$	SOT-89 SOT-23F		4.5	17.0		4.5	17.0		4.5	17.0	mV
	Temperature	T _{MAX}	SOT-23		6.6	24		6.6	24		6.6	24	mV
Ratio of Change in		⊿V _{KA} = 10 V-V _{REF}		-1.0	-2.7		-1.0	-2.7		-1.0	-2.7		
⊿V _{REF} / ⊿V _{KA}		I _{KA} =10 mA	⊿V _{KA} = 36 V-10 V		-0.5	-2.0		-0.5	-2.0		-0.5	-2.0	mV/V
I _{REF}	Reference Input Current	$I_{KA} = 10 \text{ mA},$ $R_1 = 10 \text{ K}\Omega, R_2$	= ∞		1.5	4.0		1.5	4.0		1.5	4.0	μΑ
	Input Current REF / ⊿T Over Full Temperature	$ \begin{array}{c} \text{I}_{\text{KA}} = 10 \text{ mA}, \\ \text{R}_{1} = 10 \text{ K}\Omega, \\ \text{R}_{2} = \infty, \\ \text{T}_{2} = -\infty \end{array} $	SOT-89 SOT-23F		0.4	1.2		0.4	1.2		0.4	1.2	μΑ
⊿I _{REF} / ⊿Т			SOT-23		0.8	2.0		0.8	2.0		0.8	2.0	μΑ
I _{KA(MIN)}	Minimum Cathode Current for Regulation	V _{KA} = V _{REF}			0.45	1.00		0.45	1.00		0.45	1.00	mA
I _{KA(OFF)}	Off -Stage Cathode Current	V _{KA} = 36 V, V _{REF} = 0			0.05	1.00		0.05	1.00		0.05	1.00	μΑ
Z _{KA}	Dynamic Impedance	$\label{eq:VKA} \begin{split} V_{KA} &= V_{REF}, \\ I_{KA} &= 1 \text{ to } 100 \text{ mA}, \\ f &\geq 1.0 \text{ kHz} \end{split}$			0.15	0.50		0.15	0.50		0.15	0.50	Ω

Note:

5. $T_{MIN} = -25^{\circ}C$, $T_{MAX} = +85^{\circ}C$.

Electrical Characteristics^(6,7) (Continued)

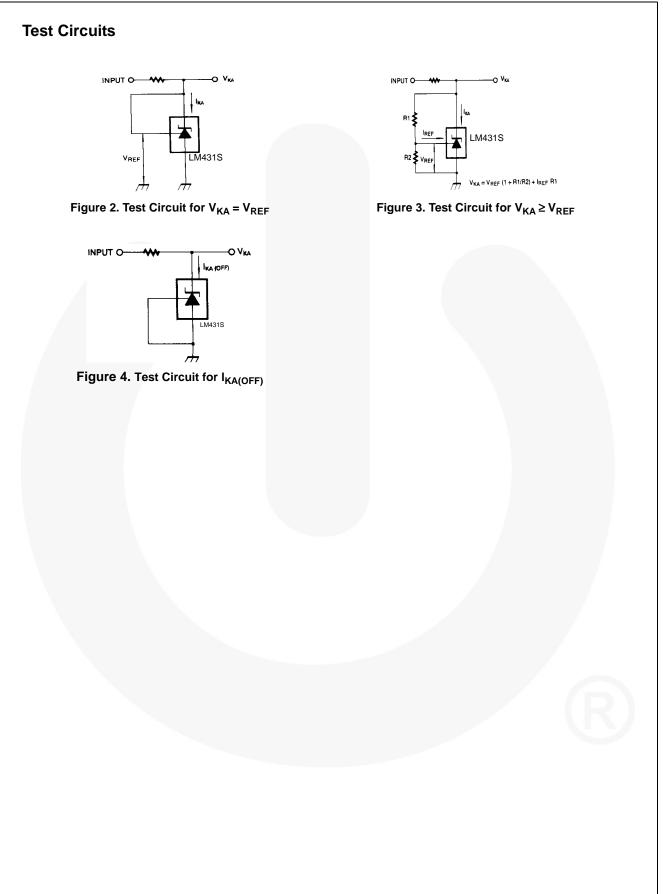

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

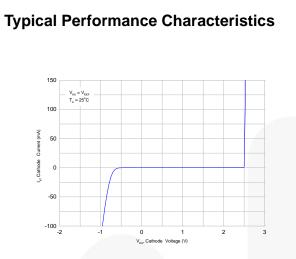
Symbol	Deremeter	Conditions			LM431SAI			
Symbol Parameter		Conditions			Тур.	Max.	Unit	
V _{REF}	Reference Input Voltage	$V_{KA} = V_{REF}$, $I_{KA} = 10 \text{ mA}$		2.450	2.500	2.550	V	
V _{REF(dev)}	Deviation of Reference Input Voltage Over- Temperature	$\label{eq:VKA} \begin{split} V_{KA} &= V_{REF}, \ I_{KA} = 10 \ mA, \\ T_{MIN} &\leq T_A \leq T_{MAX} \end{split}$			5	20	mV	
	Ratio of Change in		⊿V _{KA} = 10 V - V _{REF}		-1.0	-2.7		
$\Delta V_{REF} / \Delta V_{KA}$	Reference Input Voltage to Change in Cathode Voltage	I _{KA} = 10 mA	⊿V _{KA} = 36 V - 10 V		-0.5	-2.0	mV/V	
I _{REF}	Reference Input Current	$I_{KA} = 10 \text{ mA}, R_1 = 10 \text{ K}\Omega, R_2 = \infty$			1.5	4.0	μΑ	
I _{REF(dev)}	Deviation of Reference Input Current Over Full Temperature Range	$\begin{split} I_{KA} &= 10 \text{ mA}, \text{R}_1 = 10 \text{K} \Omega, \text{R}_2 = \infty, \\ T_{MIN} &\leq T_A \leq T_{MAX} \end{split}$			0.8	2.0	μA	
I _{KA(MIN)}	Minimum Cathode Current for Regulation	V _{KA} = V _{REF}			0.45	1.00	mA	
I _{KA(OFF)}	Off -Stage Cathode Current	V _{KA} = 36 V, V _{REF} = 0			0.05	1.00	μΑ	
Z _{KA}	Dynamic Impedance	$V_{KA} = V_{REF}$, $I_{KA} = 1$ to 100 mA, $f \ge 1.0$ kHz			0.15	0.50	Ω	

Notes:

6. $T_{MIN} = -40^{\circ}C$, $T_{MAX} = +85^{\circ}C$.

7. The deviation parameters $V_{\text{REF}(\text{dev})}$ and $I_{\text{REF}(\text{dev})}$ are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV_{REF} , is defined as:




where T_{MAX} -T_{MIN} is the rated operating free-air temperature range of the device. αV_{REF} can be positive or negative, depending on whether minimum V_{REF} or maximum V_{REF}, respectively, occurs at the lower temperature.

Example: V_{REF(dev)} = 4.5 mV, V_{REF} = 2500 mV at 25 °C, T_{MAX} -T_{MIN} = 125 °C for LM431SAI.

$$|\alpha V_{\text{REF}}| = \frac{\left(\frac{4.5\text{mV}}{2500\text{mV}}\right) \cdot 10^6}{125^{\circ}\text{C}} = 14.4\text{ppm/}^{\circ}\text{C}$$

Because minimum V_{REF} occurs at the lower temperature, the coefficient is positive.

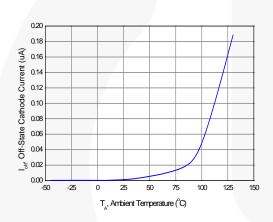


Figure 7. OFF-State Cathode Current vs. Ambient Temperature

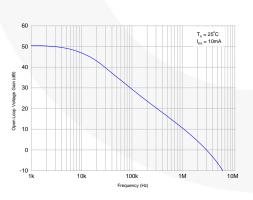


Figure 9. Frequency vs. Small Signal Voltage Amplification

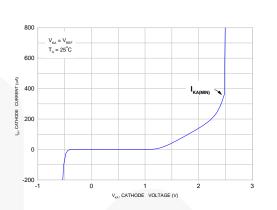


Figure 6. Cathode Current vs. Cathode Voltage

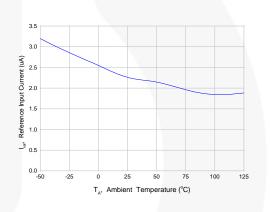


Figure 8. Reference Input Current vs. Ambient Temperature

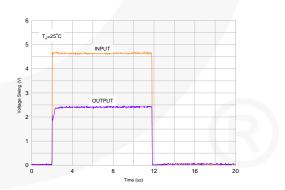
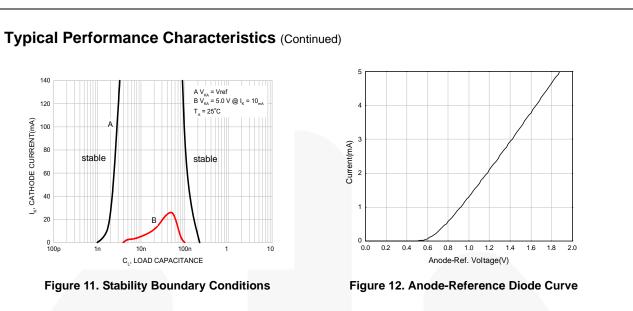
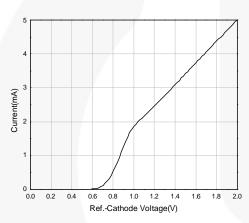




Figure 10. Pulse Response

140

120

100

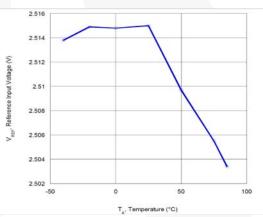
80

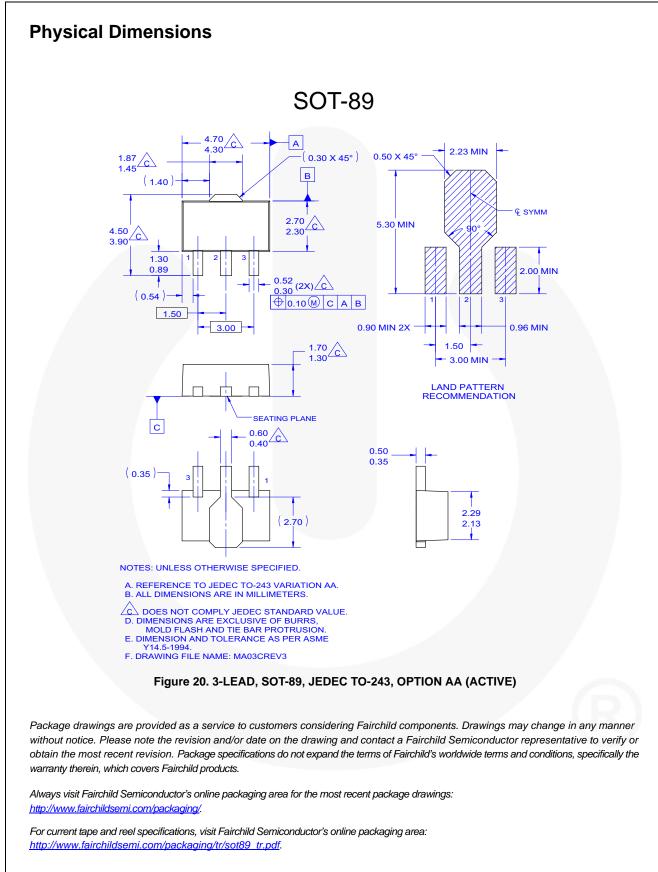
60 40 20

0 100p

stable

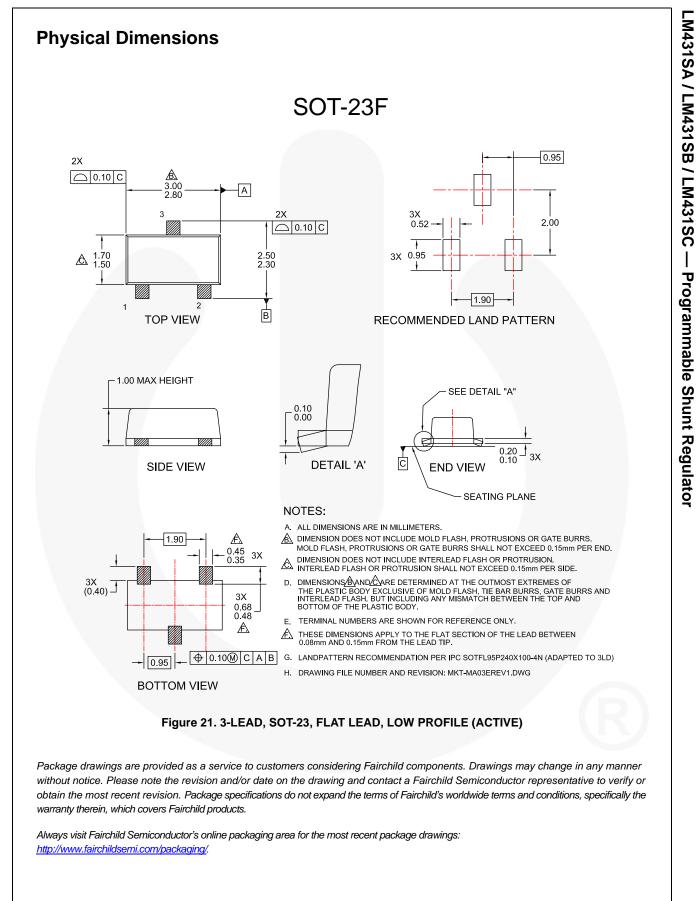
IK, CATHODE CURRENT(mA)



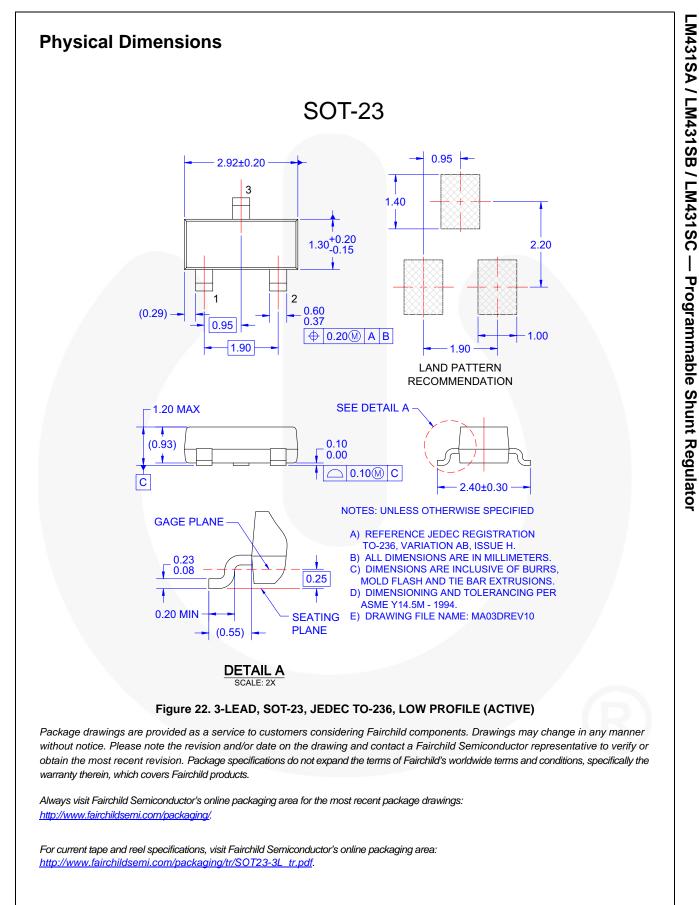

Figure 14. Reference Input Voltage vs. Ambient Temperature

$V_{O} = V_{ref} \left(1 + \frac{R_{1}}{R_{2}} \right)$ $V_{O} = \left(1 + \frac{R_{1}}{R_{2}}\right) V_{ref}$ VI O IN LM7805/MC7805OUT COMMON Vr o-m ovo **∦**R1 VREE 🕇 R2 M431S LM431S o Ô Figure 15. Shunt Regulator Figure 16. Output fir Three-Terminal Fixed Regulator $V_{O} = \left(1 + \frac{R_{1}}{R_{2}}\right) V_{ref}$ ovo R1 M4315 Figure 17. High Current Shunt Regulator V_I O T M431S LM431S Ъ, o = VREF $l_0 = \frac{V_{REF}}{R_S}$

Figure 18. Current Limit or Current Source



Typical Application



LM431SA / LM431SB / LM431SC

I

I

FAIRCHILD

SEMICONDUCTOR*

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP®, BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ **CROSSVOLT™** CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK[®] EfficientMax™ ESBC™ R F Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT FAST®

FPS™ F-PFS™ **FRFET**® Global Power ResourceSM GreenBridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Making Small Speakers Sound Louder and Better MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC[®] OPTOPLANAR[®]**

PowerTrench[®] PowerXS™ Programmable Active Droop™ **QFET** QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEAL TH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™

TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TranSiC™ TriFault Detect™ TRUECURRENT®* µSerDes™

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FastvCore™

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers by either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild to combat this global problem and encourage our customers to other in at in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 164