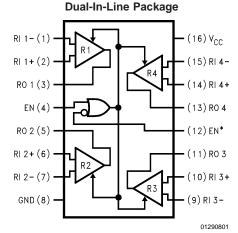
DS26LV32AT

DS26LV32AT 3V Enhanced CMOS Quad Differential Line Receiver

Literature Number: SNLS128B

DS26LV32AT **3V Enhanced CMOS Quad Differential Line Receiver**

General Description


The DS26LV32A is a high speed quad differential CMOS receiver that meets the requirements of both TIA/EIA-422-B and ITU-T V.11. The CMOS DS26LV32AT features typical low static I_{CC} of 9 mA which makes it ideal for battery powered and power conscious applications. The TRI-STATE® enables, EN and EN*, allow the device to be active High or active Low. The enables are common to all four receivers.

The receiver output (RO) is guaranteed to be High when the inputs are left open. The receiver can detect signals as low as ±200 mV over the common mode range of ±10V. The receiver outputs (RO) are compatible with TTL and LVCMOS levels.

Features

- Low Power CMOS design (30 mW typical)
- Interoperable with existing 5V RS-422 networks
- Industrial and Military Temperature Range
- Conforms to TIA/EIA-422-B (RS-422) and ITU-T V.11 Recommendation
- 3.3V Operation
- ±7V Common Mode Range @ V_{ID} = 3V
- ±10V Common Mode Range @ V_{ID} = 0.2V
- Receiver OPEN input failsafe feature
- Guaranteed AC Parameter: Maximum Receiver Skew: 4 ns Maximum Transition Time: 10 ns
- Pin compatible with DS26C32AT
- 32 MHz Toggle Frequency
- > 6.5k ESD Tolerance (HBM)
- Available in SOIC and Cerpack Packaging
- Standard Microcircuit Drawing (SMD) 5962-98585

Truth Table

Enables		Inputs	Output	
EN EN*		RI+–RI–	RO	
L H All Other Combinations of Enable Inputs		Х	Z	
		$V_{ID} \ge +0.2V$	Н	
		$V_{ID} \leq -0.2V$	L	
		Open†	Н	
† Open, not termina	ited			

L = Logic Low

H = Logic High

Z = TRI-STATE

DS26LV32AT 3V Enhanced CMOS Quad Differential Line Receiver

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

X = Irrelevant

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to +7V				
Enable Input Voltage (EN, EN*)	–0.5V to $V_{\rm CC}$				
	+0.5V				
Receiver Input Voltage (VID: RI+,					
RI–)	±14V				
Receiver Input Voltage					
(VCM: RI+, RI–)	±14V				
Receiver Output Voltage (RO)	–0.5V to V_{CC}				
	+0.5V				
Receiver Output Current (RO)	±25 mA Maximum				
Maximum Package Power Dissipation @ +25°C					
M Package	1190 mW				
W Package	1087 mW				
Derate M Package 9.8 mW/°C above	+25°C				

Derate W Package 7.3 mW/°C above +25°C							
Storage Temperature Range -65°C to +150°C							
Lead Temperature Range Soldering							
(4 Sec.)	+260°C						
ESD Ratings (HBM, 1.5 kΩ, 100 pF)							
Receiver Inputs and Enables	≥ 6.5 kV						
Other Pins	$\ge 2 \text{ kV}$						

Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage (V _{CC})	3.0	3.3	3.6	V
Operating Free Air Temp				
DS26LV32AT	-40	+25	+85	°C
DS26LV32AW	-55	+25	+125	°C

Electrical Characteristics (Notes 2, 3)

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified.

Symbol	Parameter	Con	ditions	Pin	Min	Тур	Max	Units
V _{TH}	Differential Input Threshold	V _{OUT} = V _{OH} or V _{OL}	$V_{CM} = -7V \text{ to}$ +7V, $T_A = -40^{\circ}C$ to +85°C		-200	±17.5	+200	mV
			$V_{CM} = -0.5V$ to +5.5V, $T_A =$ -55°C to +125°C (Note 9)	RI+, RI–	-200		+200	mV
V _{HY}	Hysteresis	$V_{CM} = 1.5V$	•	1		35		mV
V _{IH}	Minimum High Level Input Voltage			EN,	2.0			V
V _{IL}	Maximum Low Level Input Voltage			EN*			0.8	V
R _{IN}	Input Resistance	$V_{IN} = -7V$, $+7V$, $T_A = -40^{\circ}C$ to +85°C (Other Input = GND)			5.0	8.5		kΩ
		V _{IN} = -0.5V, +5.5 +125°C (Other In 9)		5.0			kΩ	
I _{IN}	Input Current	V _{IN} = +10V	$T_A = -40^{\circ}C$ to	RI+,	0	1.1	1.8	mA
	(Other Input = 0V,	$V_{IN} = +3V$	+85°C	RI–	0	0.27		mA
	Power On, or	$V_{IN} = 0.5V$				-0.02		mA
	$V_{\rm CC} = 0V$	$V_{IN} = -3V$			0	-0.43		mA
		$V_{IN} = -10V$			0	-1.26	-2.2	mA
		$V_{IN} = -0.5V$	$T_A = -55^{\circ}C$ to		0		-1.8	mA
		V _{IN} = 5.5V	+125°C (Note 9)		0		1.8	mA
I _{EN}	Input Current	$V_{IN} = 0V$ to V_{CC}		EN, EN*			±1	μΑ

DS26LV32AT

Electrical Characteristics (Notes 2, 3) (Continued)
Over Supply Voltage and Operating Temperature ranges, unless otherwise specified.

Symbol	Parameter	Cond	litions	Pin	Min	Тур	Max	Units
V _{OH}	High Level Output Voltage $I_{OH} = -6 \text{ mA}, V_{ID} = +1V$		= +1V		2.4	3		V
		$I_{OH} = -6 \text{ mA}, V_{ID}$	$I_{OH} = -6 \text{ mA}, V_{ID} = OPEN$					
V _{OH}	High Level Output Voltage	I _{OH} = -100 μA, V _{ID} = +1V				V _{CC} -0.1		V
		I _{OH} = - 100 μA, V	$I_{OH} = -100 \ \mu A, \ V_{ID} = OPEN$					
V _{OL}	Low Level Output Voltage	$I_{OL} = +6 \text{ mA}, V_{ID} = -1 \text{V}$		RO		0.13	0.5	V
l _{oz}	Output TRI-STATE Leakage	$V_{OUT} = V_{CC}$ or GND					±50	μA
	Current	$EN = V_{IL}, EN^* = V_{IL}$	/ _{ін}					
I _{SC}	Output Short Circuit Current	$V_{O} = 0V, V_{ID} \ge 20$	$V_{O} = 0V, V_{ID} \ge 200 \text{ mV} \text{ (Note 4)}$		-10	-35	-70	mA
I _{CC}	Power Supply Current	No Load, All	$T_A = -40^{\circ}C$ to	V _{CC}		9	15	mA
		RI+, R1– =	+85°C					
		OPEN, EN, EN*	$T_A = -55^{\circ}C$ to				20	mA
		= V _{CC} or GND	+125°C					

Switching Characteristics - Industrial (Notes 3, 7, 10, 11) Over Supply Voltage and -40°C to +85°C Operating Temperature range, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL}	Propagation Delay	$C_L = 15 \text{ pF}, V_{CM} = 1.5 \text{V}$ (<i>Figures</i>	6	17.5	35	ns
	High to Low	1, 2)				
t _{PLH}	Propagation Delay		6	17.8	35	ns
	Low to High					
t _r	Rise Time (20% to 80%)			4.1	10	ns
t _f	Fall Time (80% to 20%)			3.3	10	ns
t _{PHZ}	Disable Time	$C_L = 50 \text{ pF}, V_{CM} = 1.5 \text{V}$ (Figures			40	ns
		3, 4)				
t _{PLZ}	Disable Time				40	ns
t _{PZH}	Enable Time				40	ns
t _{PZL}	Enable Time				40	ns
t _{SK1}	Skew, t _{PHL} - t _{PLH} (Note 5)	$C_{L} = 15 \text{ pF}, V_{CM} = 1.5 \text{V}$		0.3	4	ns
t _{SK2}	Skew, Pin to Pin (Note 6)			0.6	4	ns
t _{SK3}	Skew, Part to Part (Note 7)			7	17	ns
f _{MAX}	Maximum Operating	$C_{L} = 15 \text{ pF}, V_{CM} = 1.5 \text{V}$	32			MHz
	Frequency (Note 8)					

Switching Characteristics - Military (Notes 10, 11)

Over Supply Voltage and -55°C to +125°C Operating Temperature range, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Max	Units
t _{PHL}	Propagation Delay	$C_{L} = 50 \text{ pF}, V_{CM} = 1.5 \text{V}$ (Figures	6	45	ns
	High to Low	1, 2)			
PLH	Propagation Delay		6	45	ns
	Low to High				
t _{PHZ}	Disable Time	$C_{L} = 50 \text{ pF}, V_{CM} = 1.5 \text{V}$ (Figures		50	ns
		3, 4)			
t _{PLZ}	Disable Time			50	ns
PZH	Enable Time			50	ns
t _{PZL}	Enable Time			50	ns
SK1	Skew, t _{PHL} – t _{PLH} (Note 5)	$C_{L} = 50 \text{ pF}, V_{CM} = 1.5 \text{V}$		6	ns
t _{sk2}	Skew, Pin to Pin (Note 6)			6	ns

Note 1: "Absolute Maximum ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation.

Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except V_{ID} . Note 3: All typicals are given for: V_{CC} = +3.3V, T_A = +25°C.

Note 4: Short one output at a time to ground. Do not exceed package.

Note 5: t_{SK1} is the $|t_{PHL} - t_{PLH}|$ of a channel.

Note 6: t_{SK2} is the maximum skew between any two channels within a device, either edge.

Note 7: t_{SK3} is the difference in propagation delay times between any channels of any devices. This specification (maximum limit) applies to devices within $V_{CC} \pm 0.1V$ of one another, and a Delta $T_A = \pm 5^{\circ}C$ (between devices) within the operating temperature range. This parameter is guaranteed by design and characterization.

Note 8: All channels switching, Output Duty Cycle criteria is 40%/60% measured at 50%. Input = 1V to 2V, 50% Duty Cycle, $t_p/t_f \le 5$ ns. This parameter is guaranteed by design and characterization.

Note 9: This parameter does not meet the TIA/EIA-422-B specification.

Parameter Measurement Information

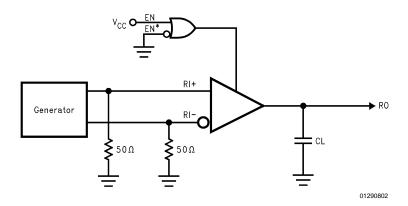
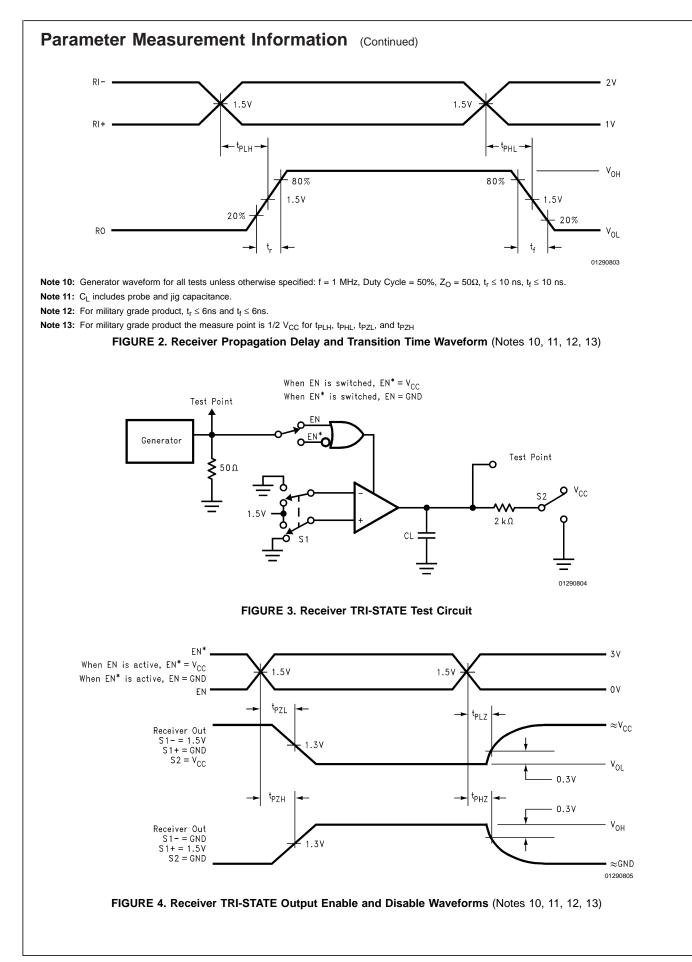
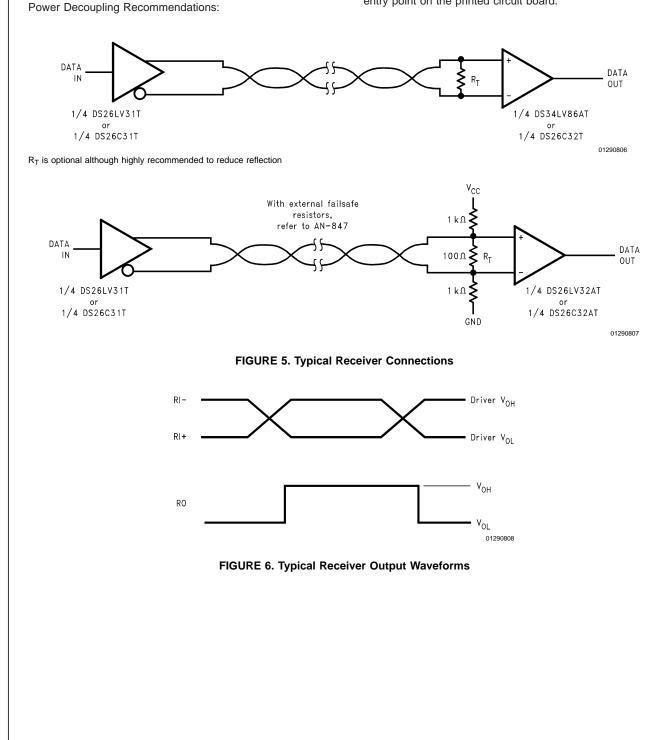



FIGURE 1. Receiver Propagation Delay and Transition Time Test Circuit (Notes 10, 11)


DS26LV32AT

Typical Application Information

General application guidelines and hints for differential drivers and receivers may be found in the following application notes:

AN-214, AN-457, AN-805, AN-847, AN-903, AN-912, AN-916

Bypass caps must be used on power pins. High frequency ceramic (surface mount is recommended) 0.1 μ F in parallel with 0.01 μ F at the power supply pin. A 10 μ F or greater solid tantalum or electrolytic should be connected at the power entry point on the printed circuit board.

Typical Application Information (Continued)

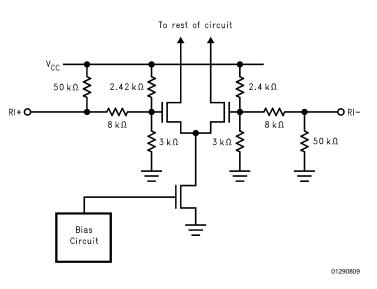


FIGURE 7. Typical Receiver Input Circuit

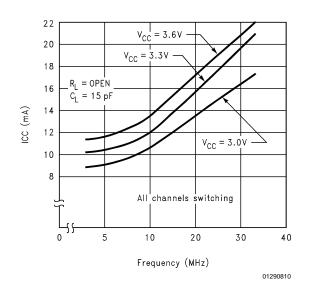
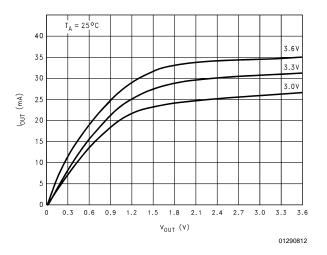
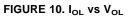
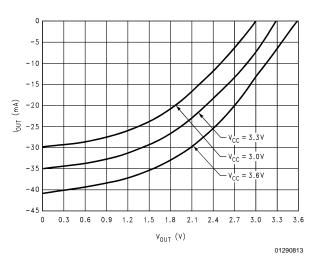
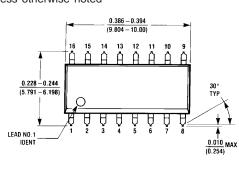
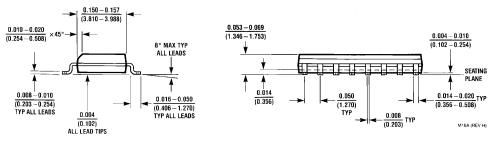


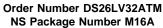

FIGURE 8. Typical $\rm I_{\rm CC}$ vs Frequency


DS26LV32AT


Typical Application Information (Continued)

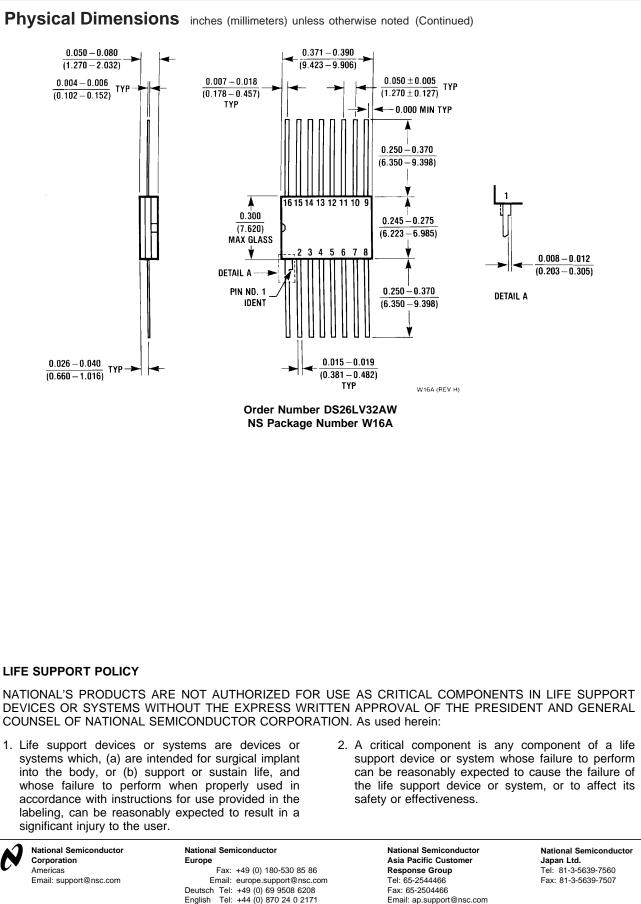
01290811


FIGURE 11. I_{OH} vs V_{OH}

DS26LV32AT

Physical Dimensions inches (millimeters) unless otherwise noted



www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Français Tel: +33 (0) 1 41 91 8790

Email: ap.support@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated