T428 Series High Volumetric Efficiency Facedown MnO₂

Overview

The KEMET T428 Series was developed to provide the volumetric efficiency of a conformally coated capacitor in a pick-and-place friendly molded package. The planerity of the molded package eliminates the "drops" associated with the conformally coated tantalum surface mount devices. This new package

design offers the highest CV/cc of any molded leadframe product. In addition, the facedown construction offers higher power ratings per cc. The robust design features and testing protocol make this part suitable for application in the telecommunications, industrial, military and aerospace markets.

Benefits

- High CV/cc
- Taped and reeled per EIA 481-1
- · SnPb termination finish
- · Laser-marked case
- 100% surge current test available
- Halogen-free epoxy
- Capacitance values of 16 to 470 µF
- Tolerances of ±5%, ±10% and ±20%
- Voltage rating of 4 to 50 VDC
- · Extended range values
- · Pick-and-place friendly
- · RoHS Compliant and lead-free terminations available
- Operating temperature range of -55°C to +125°C

Applications

Typical applications include decoupling and filtering in telecommunications, computer, industrial, defense and aerospace applications.

Environmental Compliance

RoHS Compliant (6/6) according to Directive 2002/95/EC when ordered with 100% Sn solder.

RoHS Compliant

SPICE

For a detailed analysis of specific part numbers, please visit www.kemet.com for a free download of KEMET's SPICE software. The KEMET SPICE program is freeware intended to aid design engineers in analyzing the performance of these capacitors over frequency, temperature, ripple, and DC bias conditions.

Ordering Information

Т	428	Р	227	K	006	Α	Н	61	10
Capacitor Class	Series	Case Size	Capacitance Code (pF)	Capacitance Tolerance	Voltage	Failure Rate/ Design	Lead Material	Surge	ESR
T = Tantalum	High Volumetric Efficient Facedown Hi-Rel MnO ₂ COTS	Р	First two digits represent significant figures. Third digit specifies number of zeros.	J = ±5% K = ±10% M = ±20%	004 = 4 V 006 = 6.3 V 010 = 10 V 016 = 16 V 020 = 20 V 025 = 25 V 035 = 35 V 050 = 50 V	A = N/A B = 0.1%/1,000 hours	H = Standard solder coated (SnPb 5% Pb) T = 100% tin (Sn)	61 = None 62 = 10 cycles, 25°C 63 = 10 cycles, -55°C and 85°C	10 = Standard 20 = Low 30 = Ultra-low

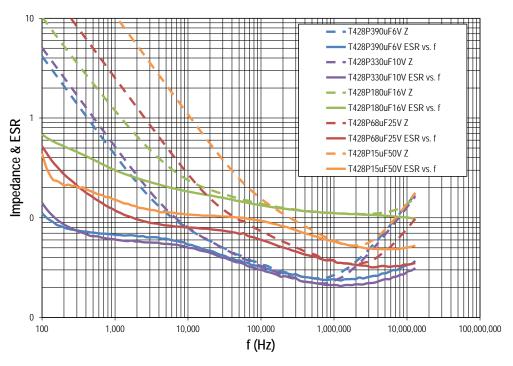
Performance Characteristics

Item	Performance Characteristics		
Operating Temperature	-55°C to 125°C		
Rated Capacitance Range	16 – 470 μF @ 120 Hz/25°C		
Capacitance Tolerance	J Tolerance (5%), K Tolerance (10%), M Tolerance (20%)		
Rated Voltage Range	4 – 50 V		
DF (120 Hz)	Refer to Part Number Electrical Specification Table		
ESR (100 kHz)	Refer to Part Number Electrical Specification Table		
Leakage Current	≤ 0.01 CV (µA) at rated voltage after 5 minutes		

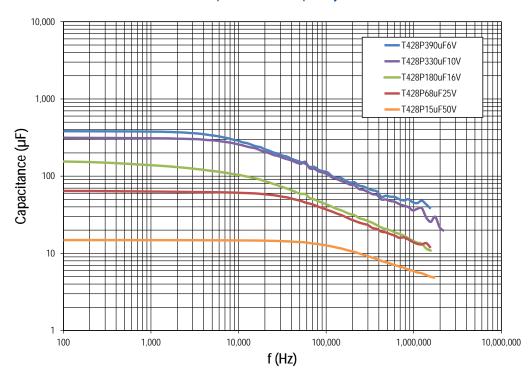
Qualification

Test	Condition		Charact	teristics			
		Δ C/C	Within ±10% of initial value				
Fortunes	85°C @ rated voltage, 2,000 hours		DF	Within initial limits			
Endurance	125°C @ 2/3 rated voltage, 2,000 hours		DCL	Within 1.25	c initial limit		
			ESR	Within initial	limits		
			Δ C/C	Within ±10%	of initial value		
04	405°0 @ 0		DF	Within initial	limits		
Storage Life	125°C @ 0 volts, 2,000 hours		DCL	Within 1.25	cinitial limit		
			ESR	Within initial	limits		
		Δ C/C	Within ±5% of initial value				
Thermal Shock	MIL-STD-202, Method 107, Condition B, mount	DF	Within initial limits				
Thermal Shock	-55°C to 125°C, 1,000 cycles	DCL	Within 1.25	Within 1.25 x initial limit			
		ESR	Within initial limits				
		+25°C	-55°C	+85°C	+125°C		
Temperature Stability	Extreme temperature exposure at a succession of continuous steps at +25°C,	Δ C/C	IL*	±10%	±10%	±20%	
Temperature Stability	-55°C, +25°C, +85°C, +125°C, +25°C	DF	IL	IL	1.5 x IL	1.5 x IL	
		DCL	IL	n/a	10 x IL	12 x IL	
			Δ C/C	Within ±5%	of initial value		
Surge Voltage	25°C and 85°C, 1.32 x rated voltage 1,000 cycle	es	DF	Within initial limits Within initial limits			
Surge voltage	(125°C, 1.2 x rated voltage)		DCL				
			ESR	Within initial limits			
	MIL-STD-202, Method 213, Condition I, 100 G	peak	Δ C/C	Within ±10 of initial value			
Mechanical Shock/Vibration	MIL-STD-202, Method 204, Condition D, 10 Hz	DF	Within initial limits				
	20 G peak	DCL	Within initial	limits			
Additional Qualification Tests per MIL-PRF-55365/8	Please contact KEMET for more information.	Please contact KEMET for more information.					

^{*}IL = Initial limit

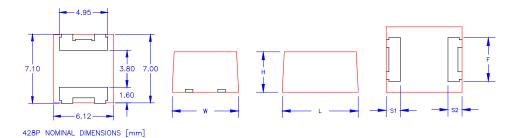

Certification

MIL-PRF-55365/8



Electrical Characteristics

Impedance & ESR vs. Frequency



Capacitor vs. Frequency

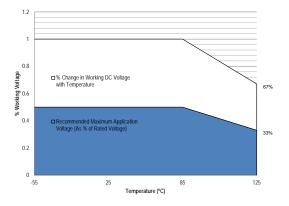
Dimensions - Millimeters

Case	Size	Component							
EIA	L	W	Н	F ±0.2	S1 ±0.2	S2 ±0.2			
7260-38	7.2 Max.	6.0 ± 0.3	3.5 ± 0.3	4.95	1.6	1.6			

Note: Molded case dimensions are 7.0 mm L x 6.12 mm W x 3.78 mm H

Table 1 – Ratings & Part Number Reference

Rated Voltage	Rated Capacitance	Case Code/ Case Size	KEMET Part Number	DC Leakage	DF	Standard ESR	Low ESR	Ultra-Low ESR
VDC	μF	KEMET/EIA	(See below for part options)	μΑ @ +20°C Maximum/ 5 Minutes	%@ +20°C 120 Hz Maximum	mΩ @ +20°C 100 kHz Maximum	mΩ @ +20°C 100 kHz Maximum	Ω @ +20°C 100 kHz Maximum
4	470	P/7260-38	T428P477(1)004(2)(3)(4)(5)	18.8	10.0	130	45	NA
6.3	390	P/7260-38	T428P397(1)006(2)(3)(4)(5)	24.6	8.0	130	45	NA
6.3	470	P/7260-38	T428P477(1)006(2)(3)(4)(5)	29.6	10.0	120	50	NA
10	330	P/7260-38	T428P337(1)010(2)(3)(4)(5)	33.0	8.0	130	45	NA
16	180	P/7260-38	T428P187(1)016(2)(3)(4)(5)	28.8	8.0	130	55	NA
16	220	P/7260-38	T428P227(1)016(2)(3)(4)(5)	35.2	8.0	120	55	NA
20	150	P/7260-38	T428P157(1)020(2)(3)(4)(5)	30.0	8.0	140	100	NA
25	68	P/7260-38	T428P686(1)025(2)(3)(4)(5)	17.0	6.0	200	95	NA
35	22	P/7260-38	T428P226(1)035(2)(3)(4)(5)	7.7	6.0	280	220	NA
50	15	P/7260-38	T428P156(1)050(2)(3)(4)(5)	7.5	6.0	400	350	NA
VDC	μF	KEMET/EIA	(See below for part options)	μΑ @ +20°C Maximum/ 5 Minutes	%@ +20°C 120 Hz Maximum	mΩ @ +20°C 100 kHz Maximum	mΩ @ +20°C 100 kHz Maximum	Ω@+20°C 100 kHz Maximum
Rated Voltage	Rated Capacitance	Case Code/ Case Size	KEMET Part Number	DC Leakage	DF	Standard ESR	Low ESR	Ultra-Low ESR


- (1) To complete KEMET part number, insert J for ±5%, K for ±10% and M for ±20%. Designates capacitance tolerance.
- (2) To complete KEMET part number, insert B (0.1%/1,000 hours) or A = N/A.
- (3) To complete KEMET part number, insert H = solder plated or T = 100% tin (Sn). Designates termination finish.
- (4) To complete KEMET part number, insert 61 = none, 62 = 10 cycles +25°C or 63 = 10 cycles -55°C +85°C. Designates surge current option.
- (5) To complete KEMET part number, insert 10 = standard, 20 = low or 30 = ultra-low. Designates ESR option.

Please refer to Ordering Information for additional details.

Recommended Voltage Derating Guidelines

-55°C to 125°C						
% Change in Working DC Voltage with Temperature		V_R				
Recommended Maximum Application Voltage		V_R				

Ripple Current/Ripple Voltage

KEMET Case Code	EIA Case Code	Maximum Power Dissipation (P max) mWatts @ 25°C with +20°C Rise
Р	7260–38	325

Temperature Compensation Multipliers for Maximum Power Dissipation						
≤ 25°C	85°C	125°C				
1.00	0.90	0.40				

T= Environmental Temperature

Using the P max of the device, the maximum allowable rms ripple current or voltage may be determined.

 $I(max) = \sqrt{P \ max/R}$ $E(max) = \sqrt{P \ max^*R}$

I = rms ripple current (amperes)

E = rms ripple voltage (volts)

P max = maximum power dissipation (watts)

R = ESR at specified frequency (ohms)

Reverse Voltage

Solid tantalum capacitors are polar devices and may be permanently damaged or destroyed if connected with the wrong polarity. The positive terminal is identified on the capacitor body by a stripe, plus in some cases a beveled edge. A small degree of transient reverse voltage is permissible for short periods per the below table. The capacitors should not be operated continuously in reverse mode, even within these limits.

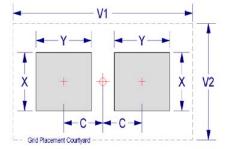

Temperature	Permissible Transient Reverse Voltage
25°C	15% of Rated Voltage
85°C	5% of Rated Voltage
125°C	1% of Rated Voltage

Table 2 – Land Dimensions/Courtyard

KEMET	Metric Size Code	Density Level A: Maximum (Most) Land Protrusion (mm)				Density Level B: Median (Nominal) Land Protrusion (mm)				Density Level C: Minimum (Least) Land Protrusion (mm)						
Case	EIA	Х	Υ	С	V1	V2	Х	Υ	С	V1	V2	Х	Υ	С	V1	V2
Р	7260-38	5.25	1.80	2.35	8.50	7.30	5.15	1.70	2.35	8.00	6.80	5.05	1.60	2.35	7.70	6.50

Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. Density Level C: For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC-7351).

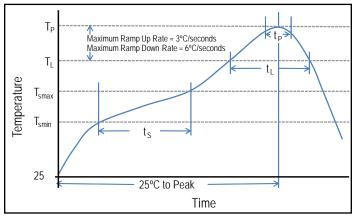
² Land pattern geometry is too small for silkscreen outline.

¹ Height of these chips may create problems in wave soldering.

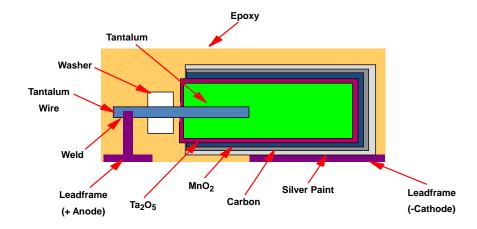
Soldering Process

KEMET's families of surface mount capacitors are compatible with wave (single or dual), convection, IR, or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. KEMET's recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/J-STD-020D standard for moisture sensitivity testing. The devices can safely withstand a maximum of three reflow passes at these conditions.

Note that although the X/7343–43 case size can withstand wave soldering, the tall profile (4.3 mm maximum) dictates care in wave process development.

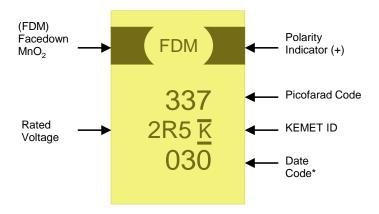

Hand soldering should be performed with care due to the difficulty in process control. If performed, care should be taken to avoid contact of the soldering iron to the molded case. The iron should be used to heat the solder pad, applying solder between the pad and the termination, until reflow occurs. Once reflow occurs, the iron should be removed immediately. "Wiping" the edges of a chip and heating the top surface is not recommended.

During typical reflow operations, a slight darkening of the gold-colored epoxy may be observed. This slight darkening is normal and not harmful to the product. Marking permanency is not affected by this change.


Profile Feature	SnPb Assembly	Pb-Free Assembly
Preheat/Soak		
Temperature Minimum (T _{Smin})	100°C	150°C
Temperature Maximum (T _{Smax})	150°C	200°C
Time (t_s) from T_{smin} to T_{smax})	60 – 120 seconds	60 – 120 seconds
Ramp-up Rate (T _L to T _P)	3°C/seconds maximum	3°C/seconds maximum
Liquidous Temperature (T _L)	183°C	217°C
Time Above Liquidous (t _L)	60 – 150 seconds	60 – 150 seconds
Peak Temperature (T _P)	220°C* 235°C**	250°C* 260°C**
Time within 5°C of Maximum Peak Temperature (t _P)	20 seconds maximum	30 seconds maximum
Ramp-down Rate (T _P to T _L)	6°C/seconds maximum	6°C/seconds maximum
Time 25°C to Peak Temperature	6 minutes maximum	8 minutes maximum

Note: All temperatures refer to the center of the package, measured on the package body surface that is facing up during assembly reflow.

^{**}Case Size A, B, C, H, I, K, M, R, S, T, U, V, W, and Z

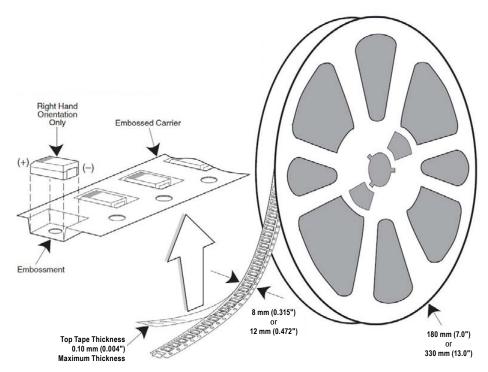

Construction

^{*}Case Size D, E, P, Y, and X

Capacitor Marking

* 030 = 30th week of 2010

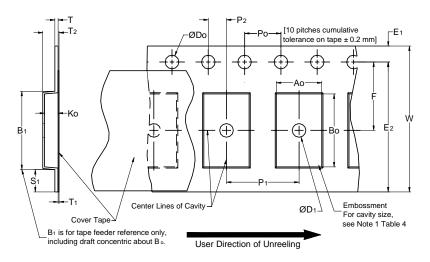
Date Code *						
1 st digit = Last number of Year	9 = 2009 0 = 2010 1 =2011 2 = 2012 3 = 2013 4 =2014					
3 rd and 4 th digit = Week of the Year	01 = 1 st week of the Year to 52 = 52 nd week of the Year					


Storage

Tantalum chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature—reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 60% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulphur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within three years of receipt.

Tape & Reel Packaging Information

KEMET's molded tantalum and aluminum chip capacitor families are packaged in 8 and 12 mm plastic tape on 7" and 13" reels in accordance with *EIA Standard 481–1*: Embossed Carrier Taping of Surface Mount Components for Automatic Handling. This packaging system is compatible with all tape-fed automatic pick-and-place systems.


Table 3 – Packaging Quantity

Case Code		Tape Width (mm)	7" Reel*	13" Reel*	
KEMET	EIA				
R	2012-12	8	2,500	10,000	
I	3216-10	8	3,000	12,000	
S	3216-12	8	2,500	10,000	
Т	3528-12	8	2,500	10,000	
М	3528-15	8	2,000	8,000	
U	6032-15	12	1,000	5,000	
L	6032-19	12	1,000	5,000	
W	7343-15	12	1,000	3,000	
Z	7343-17	12	1,000	3,000	
V	7343-20	12	1,000	3,000	
Α	3216-18	8	2,000	9,000	
В	3528-21	8	2,000	8,000	
С	6032-28	12	500	3,000	
D	7343-31	12	500	2,500	
Υ	7343-40	12	500	2,000	
Х	7343-43	12	500	2,000	
E/T428P	7260-38	12	500	2,000	
Н	7360-20	12	1,000	2,500	

^{*} No C-Spec required for 7" reel packaging. C-7280 required for 13" reel packaging.

Figure 1 – Embossed (Plastic) Carrier Tape Dimensions

Table 4 – Embossed (Plastic) Carrier Tape Dimensions

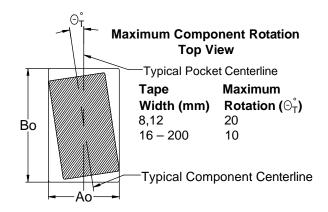
Metric will govern

Constant Dimensions — Millimeters (Inches)									
Tape Size	D ₀	D ₁ Minimum Note 1	E ₁	P ₀	P ₂	R Reference Note 2	S ₁ Minimum Note 3	T Maximum	T ₁ Maximum
8 mm		1.0 (0.039)				25.0 (0.984)			
12 mm	1.5 +0.10/-0.0 (0.059 +0.004/-0.0)	1.5	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	30	0.600 (0.024)	0.600 (0.024)	0.100 (0.004)
16 mm		(0.059)				(1.181)			
Variable Dimensions — Millimeters (Inches)									
Tape Size	Pitch	B ₁ Maximum Note 4	E ₂ Minimum	F	P ₁	T ₂ Maximum	W Maximum	A ₀ ,B ₀	. & K ₀
8 mm	Single (4 mm)	4.35 (0.171)	6.25 (0.246)	3.5 ±0.05 (0.138 ±0.002)	4.0 ±0.10 (0.157 ±0.004)	2.5 (0.098)	8.3 (0.327)		
12 mm	Single (4 mm) & Double (8 mm)	8.2 (0.323)	10.25 (0.404)	5.5 ±0.05 (0.217 ±0.002)	8.0 ±0.10 (0.315 ±0.004)	4.6 (0.181)	12.3 (0.484)	Note 5	
16 mm	Triple (12 mm)	12.1 (0.476)	14.25 (0.561)	5.5 ±0.05 (0.217 ±0.002)	8.0 ±0.10 (0.315 ±0.004)	4.6 (0.181)	16.3 (0.642)		

- 1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.
- 2. The tape, with or without components, shall pass around R without damage (see Figure 5).
- 3. If S₁ < 1.0 mm, there may not be enough area for cover tape to be properly applied (see EIA Standard 481–D, paragraph 4.3, section b).
- 4. B₁ dimension is a reference dimension for tape feeder clearance only.
- 5. The cavity defined by A_{α} , B_{α} and K_{α} shall surround the component with sufficient clearance that:
 - (a) the component does not protrude above the top surface of the carrier tape.
 - (b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
 - (c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 2).
 - (d) lateral movement of the component is restricted to 0.5 mm maximum for 8 mm and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 3).
 - (e) see Addendum in EIA Standard 481–D for standards relating to more precise taping requirements.

Packaging Information Performance Notes

1. Cover Tape Break Force: 1.0 Kg minimum.


2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

Tape Width	Peel Strength		
8 mm	0.1 to 1.0 Newton (10 to 100 gf)		
12 and 16 mm	0.1 to 1.3 Newton (10 to 130 gf)		

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 ± 10 mm/minute.

3. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards 556 and 624.*

Figure 2 – Maximum Component Rotation

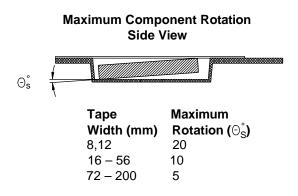


Figure 3 – Maximum Lateral Movement

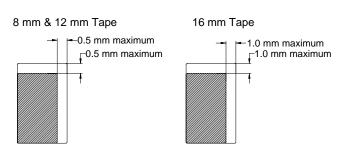


Figure 4 – Bending Radius

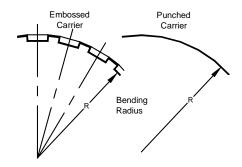
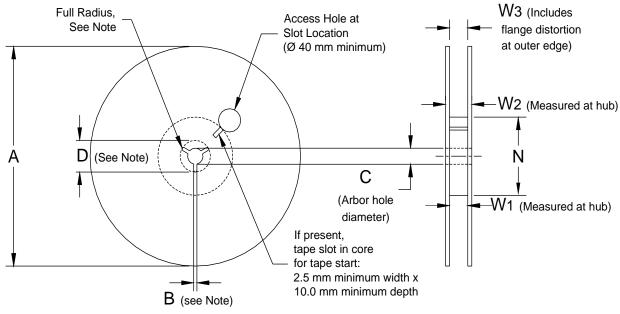



Figure 5 – Reel Dimensions

Note: Drive spokes optional; if used, dimensions B and D shall apply.

Table 5 - Reel Dimensions

Metric will govern

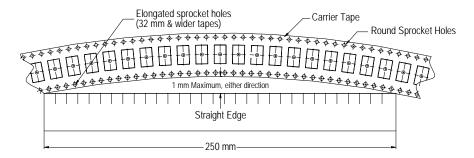

Constant Dimensions — Millimeters (Inches)						
Tape Size	A	B Minimum	С	D Minimum		
8 mm	178 ±0.20 (7.008 ±0.008)	1.5 (0.059)	13.0 +0.5/-0.2 (0.521 +0.02/-0.008)	20.2 (0.795)		
12 mm	or					
16 mm	330 ±0.20 (13.000 ±0.008)					
Variable Dimensions — Millimeters (Inches)						
Tape Size	N Minimum	W ₁	W ₂ Maximum	W ₃		
8 mm		8.4 +1.5/-0.0 (0.331 +0.059/-0.0)	14.4 (0.567)			
12 mm	50 (1.969)	12.4 +2.0/-0.0 (0.488 +0.078/-0.0)	18.4 (0.724)	Shall accommodate tape width without interference		
16 mm	. ,	16.4 +2.0/-0.0 (0.646 +0.078/-0.0)	22.4 (0.882)			

Figure 6 - Tape Leader & Trailer Dimensions

Figure 7 – Maximum Camber

