TVP5146M2 NTSC/PAL/SECAM 4×10-Bit Digital Video Decoder With Macrovision[™] Detection, YPbPr Inputs, 5-Line Comb Filter, and SCART Support

Data Manual

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

> Literature Number: SLES141H July 2005–Revised February 2012

Contents

1	Introd	luction .		<u>9</u>
	1.1	Features	5	. <u>9</u>
	1.2	Descripti	ion	<u>10</u>
	1.3	Applicati	ons	<u>11</u>
	1.4	Related	Products	11
	1.5	Docume	nt Conventions	11
	1.6	Ordering	Information	11
	1.7	Function	al Block Diagram	12
	1.8	Terminal	Assignments	13
	1.9	Terminal	I Functions	14
2	Funct	ional De	escription	16
	2.1	Analog F	Processing and A/D Converters	<u>16</u>
		2.1.1	Video Input Switch Control	<u>17</u>
		2.1.2	Analog Input Clamping	<u>17</u>
		2.1.3	Automatic Gain Control	<u>17</u>
		2.1.4	ADCs	<u>17</u>
	2.2	Digital V	ideo Processing	<u>17</u>
			2x Decimation Filter	
		2.2.2	Composite Processor	
			2.2.2.1 Color Low-Pass Filter	
			2.2.2.2 Y/C Separation	
			Luminance Processing	
		2.2.4	Color Transient Improvement (CTI)	<u>22</u>
		2.2.5	Component Video Processor	<u>23</u>
		2.2.6	Color Space Conversion	<u>23</u>
	2.3	Clock Ci	rcuits	<u>23</u>
	2.4		ne Control (RTC)	
	2.5		ormatter	
		2.5.1	Fast Switches for SCART	<u>26</u>
		2.5.2	Separate Syncs	<u>26</u>
			Embedded Syncs	
	2.6		Interface	
		2.6.1	Reset and I ² C Bus Address Selection	_
			I ² C Operation	
			VBUS Access	<u>33</u>
				<u>34</u>
	2.7		a Processor	_
				<u>35</u>
			·	<u>36</u>
	2.8			<u>36</u>
	2.9		g External Syncs	
	2.10		Control Registers	
	2.11	-	Definitions	
_	2.12		egister Definitions	
3	Electr	ical Spe	ecifications	<u>93</u>

TEXAS INSTRUMENTS

www.ti.com

SLES141H-JULY 2005-REVISED FEBRUARY 2012

	3.1	Absolute Maximum Ratings 93
	3.2	Recommended Operating Conditions
	3.3	Crystal Specifications
	3.4	Electrical Characteristics
	3.5	DC Electrical Characteristics
	3.6	Analog Processing and A/D Converters <u>94</u>
	3.7	Clocks, Video Data, Sync Timing
	3.8	I ² C Host Port Timing <u>95</u>
	3.9	Thermal Specifications
4	Exam	ple Register Settings 97
	4.1	Example 1 97
		4.1.1 Assumptions
		4.1.2 Recommended Settings 97
	4.2	Example 2 <u>98</u>
		4.2.1 Assumptions
		4.2.2 Recommended Settings
	4.3	Example 3
		4.3.1 Assumptions
		4.3.2 Recommended Settings
5	Appli	ication Information
	5.1	Application Example
	5.2	Designing With PowerPAD™ Devices
Revis	sion Hi	istory

List of Figures

1-1	Functional Block Diagram	<u>13</u>
1-2	Terminal Assignments Diagram	<u>13</u>
2-1	Analog Processors and A/D Converters	<u>16</u>
2-2	Digital Video Processing Block Diagram	<u>18</u>
2-3	Composite and S-Video Processor	<u>19</u>
2-8	Luminance Edge-Enhancer Peaking Block Diagram	22
2-9	Peaking Filter Response, NTSC/PAL ITU-R BT.601 Sampling	22
2-10	Y Component Gain, Offset, Limit	<u>23</u>
2-11	CbCr Component Gain, Offset, Limit	<u>23</u>
2-12	Reference Clock Configurations	<u>24</u>
2-13	RTC Timing	<u>24</u>
2-14	Vertical Synchronization Signals for 525-Line System	<u>28</u>
2-15	Vertical Synchronization Signals for 625-Line System	<u>29</u>
2-16	Horizontal Synchronization Signals for 10-Bit 4:2:2 Mode	<u>30</u>
2-17	Horizontal Synchronization Signals for 20-Bit 4:2:2 Mode	<u>31</u>
2-18	VSYNC Position With Respect to HSYNC	<u>31</u>
2-19	VBUS Access	<u>34</u>
2-20	Reset Timing	37
2-21	Teletext Filter Function	76
3-1	Clocks, Video Data, and Sync Timing	
3-2	I ² C Host Port Timing	95
5-1	Example Application Circuit	100

www.ti.com

List of Tables

2-1 Output Format 25 2-2 Summary of Line Frequencies, Data Rates, and Pixel/Line Counts. 25 2-4 PiX Address Selection 31 2-4 FiC Host Interface Terminal Description 32 2-5 FiX Address Selection 32 2-6 Supported VB System 34 2-7 Ancillary Data Format and Sequence 35 2-8 VBI Raw Data Output Format 36 2-9 Reset Sequence 36 2-9 Reset Sequence 36 2-11 VBUS Register Summary 31 2-12 Analog Channel and Video Mode Selection 42 2-14 Analog Channel and Video Mode Selection 42 2-14 AFE Gain Control Register 43 2-15 Video Standard Register 44 2-16 Color Killer Register 45 2-17 Vatios Standard Register 45 2-16 Luminance Processing Control 1 Register 45 2-11 Luminance Processing Control 2 Register 46 2-22 Luminance Processing Control 1 Register 47	1-1	Terminal Functions	<u>14</u>
2-3 EAV and SAV Sequence 31 2-4 I [°] C Host Interface Terminal Description 32 2-5 I [°] C Address Selection 32 2-6 Supported VB System 34 2-7 Ancillary Data Format and Sequence 35 2-8 VBI Raw Data Output Format 36 2-9 Reset Sequence 36 2-10 I [°] C Register Summary 38 2-11 VBI Raw Data Output Format 38 2-213 Reset Sequence 36 2-14 AFE Gain Control Register 42 2-15 Video Standard Register 42 2-16 Operation Mode Control Register 43 2-16 Operation Mode Control Register 45 2-16 Luminance Processing Control 1 Register 45 2-21 Luminance Processing Control 2 Register 46 2-22 Luminance Processing Control 2 Register 47 2-24 Chrominance Statuation Register 47 2-24 Chrominance Processing Control 2 Register 48 2-24 Chrominance Processing Control 1 Register 49	2-1	Output Format	<u>25</u>
2-4 I [°] C Host Interface Terminal Description 32 2-5 I [°] C Address Selection 32 2-5 Supported VBI System 34 2-7 Ancillary Data Format and Sequence 35 2-8 VBI Raw Data Output Format 36 2-7 Processing Summary 36 2-10 I [°] C Register Summary 36 2-11 VBUS Register Summary 41 2-12 Input Select Register 42 2-13 Analog Channel and Video Mode Selection 42 2-14 AFE Gain Control Register 43 2-15 Video Standard Register 43 2-16 Operation Mode Control Register 43 2-16 Optiminance Processing Control 1 Register 44 2-18 Color Killer Register Control Register 46 2-14 AFE Gain Control Register 46 2-14 Atte Segister 45 2-14 Atte Segister 45 2-14 Atte Segister 46 2-14 Luminance Processin	2-2	Summary of Line Frequencies, Data Rates, and Pixel/Line Counts	<u>25</u>
25 FC Address Selection . 32 26 Supported VBI System	2-3	EAV and SAV Sequence	31
25 FC Address Selection . 32 26 Supported VBI System	2-4	I ² C Host Interface Terminal Description	32
2-7 Ancillary Data Format and Sequence 95 2-8 VBI Raw Data Output Format 36 2-9 Reset Sequence 36 2-10 FC Register Summary 38 2-11 VBUS Register Summary 41 2-12 Input Select Register 42 2-13 Analog Channel and Video Mode Selection 42 2-14 AFE Gain Control Register 43 2-15 Video Standard Register 43 2-16 Operation Mode Control Register 43 2-17 Autoswitch Mask Register 44 2-18 Cubrinance Processing Control 1 Register 45 2-19 Luminance Processing Control 2 Register 46 2-20 Luminance Processing Control 2 Register 46 2-21 Luminance Processing Control 2 Register 47 2-22 Luminance Processing Control 1 Register 47 2-23 Chrominance Structation Register 47 2-24 Chrominance Structation Register 48 2-25 Chrominance Processing Control 1 Register 48 2-26 Component Pr Saturation Register<	2-5	I ² C Address Selection	32
2-7 Ancillary Data Format and Sequence 95 2-8 VBI Raw Data Output Format 36 2-9 Reset Sequence 36 2-10 FC Register Summary 38 2-11 VBUS Register Summary 41 2-12 Input Select Register 42 2-13 Analog Channel and Video Mode Selection 42 2-14 AFE Gain Control Register 43 2-15 Video Standard Register 43 2-16 Operation Mode Control Register 43 2-17 Autoswitch Mask Register 44 2-18 Cubrinance Processing Control 1 Register 45 2-19 Luminance Processing Control 2 Register 46 2-20 Luminance Processing Control 2 Register 46 2-21 Luminance Processing Control 2 Register 47 2-22 Luminance Processing Control 1 Register 47 2-23 Chrominance Structation Register 47 2-24 Chrominance Structation Register 48 2-25 Chrominance Processing Control 1 Register 48 2-26 Component Pr Saturation Register<	2-6	Supported VBI System	34
2-8 VBI Raw Data Output Format 96 2-9 Resel Sequence 36 2-10 PCR Register Summary 38 2-11 VBUS Register Summary 41 1-12 Input Select Register 42 1-13 Analog Channel and Video Mode Selection 42 2-14 AFE Gain Control Register 43 2-15 Video Standard Register 43 2-16 Operation Mode Control Register 44 2-17 Autoswitch Mask Register 44 2-18 Color Killer Register 44 2-19 Luminance Processing Control 2 Register 45 2-20 Luminance Processing Control 3 Register 46 2-21 Luminance Brightness Register 47 2-22 Luminance Brightness Register 47 2-23 Luminance Brocessing Control 1 Register 47 2-24 Chrominance Saturation Register 47 2-25 Chrominance Processing Control 1 Register 48 2-26 Component Y Contrast Register 49	2-7		
2-9 Reset Sequence. 36 2-10 I/C Register Summary. 38 2-11 VBUR Register Summary. 41 2-12 Input Select Register 42 2-13 Analog Channel and Video Mode Selection. 42 2-14 AFE Gain Control Register 43 2-15 Video Standard Register 43 2-16 Operation Mode Control Register 44 2-17 Autoswitch Mask Register 44 2-18 Color Killer Register 45 2-19 Luminance Processing Control 1 Register 45 2-20 Luminance Processing Control 3 Register 46 2-21 Luminance Processing Control 3 Register 46 2-22 Luminance Processing Control 3 Register 47 2-23 Luminance Processing Control 1 Register 47 2-24 Chrominance Processing Control 1 Register 47 2-25 Chrominance Processing Control 1 Register 48 2-26 Chrominance Processing Control 1 Register 49 2-27 Chrominance Processing Control 2 Register 49 2-30 Compone	2-8		
2-10 I ² C Register Summary 38 2-11 VBUS Register Summary 41 2 12 Input Select Register 42 2-13 Analog Channel and Video Mode Selection 42 2-14 AFE Gain Control Register 43 2-15 Video Standard Register 43 2-16 Operation Mode Control Register 44 2-17 Autoswitch Mask Register 44 2-18 Color Killer Register 44 2-19 Luminance Processing Control 1 Register 45 2-20 Luminance Processing Control 2 Register 46 2-21 Luminance Brocessing Control 3 Register 46 2-22 Luminance Brocessing Control 3 Register 47 2-23 Luminance Rocessing Control 3 Register 47 2-24 Chrominance Processing Control 1 Register 47 2-25 Chrominance Processing Control 1 Register 48 2-26 Chrominance Processing Control 1 Register 49 2-27 Chrominance Processing Control 2 Register 49 <td< td=""><td>2-9</td><td></td><td></td></td<>	2-9		
2-11 VBUS Register Summary 41 2-12 Input Select Register 42 2-13 Analog Channel and Video Mode Selection 42 2-14 AFE Gain Control Register 43 2-15 Video Standard Register 43 2-16 Operation Mode Control Register 43 2-17 Autoswitch Mask Register 44 2-18 Color Killer Register 44 2-18 Color Killer Register 45 2-19 Luminance Processing Control 1 Register 45 2-20 Luminance Processing Control 3 Register 46 2-21 Luminance Processing Control 3 Register 46 2-22 Luminance Contrast Register 47 2-23 Luminance Contrast Register 47 2-24 Chrominance Processing Control 1 Register 47 2-25 Chrominance Processing Control 1 Register 47 2-26 Curminance Processing Control 1 Register 48 2-27 Chrominance Processing Control 1 Register 48 2-28 Component P Saturation Register 49 2-30 Component P Satur	2-10		
2-12 Input Select Register 42 2-13 Analog Channel and Video Mode Selection 42 2-14 AFE Gain Control Register 43 2-15 Video Standard Register 43 2-16 Operation Mode Control Register 44 2-17 Autoswitch Mask Register 44 2-18 Color Killer Register 45 2-19 Luminance Processing Control 1 Register 45 2-20 Luminance Processing Control 2 Register 46 2-21 Luminance Processing Control 3 Register 46 2-22 Luminance Broitses Register 46 2-23 Luminance Processing Control 3 Register 47 2-24 Chrominance Saturation Register 47 2-25 Chrominance Processing Control 1 Register 48 2-26 Chrominance Processing Control 2 Register 49 2-27 Chrominance Processing Control 2 Register 49 2-26 Component Pr Saturation Register 49 2-27 Chrominance Register 49 2-28 Component Y Contrast Register 49 2-29 Compon	2-11		
2-13 Analog Channel and Video Mode Selection 42 2-14 AFE Gain Control Register 43 2-15 Video Standard Register 43 2-16 Operation Mode Control Register 44 2-17 Autoswitch Mask Register 44 2-18 Color Killer Register 44 2-19 Luminance Processing Control 1 Register 45 2-20 Luminance Processing Control 2 Register 46 2-21 Luminance Processing Control 3 Register 46 2-22 Luminance Brightness Register 46 2-23 Luminance Saturation Register 47 2-24 Chrominance Saturation Register 47 2-25 Chrominance Processing Control 1 Register 48 2-26 Chrominance Processing Control 2 Register 48 2-27 Chrominance Processing Control 2 Register 49 2-28 Component Pr Saturation Register 49 2-29 Component P Saturation Register 49 2-29 Component P Saturation Register 49 2-31 Component P Saturation Register 50 2-32		• •	
2-14 AFE Gain Control Register 43 2-15 Video Standard Register 43 2-16 Operation Mode Control Register 44 2-17 Autoswitch Mask Register 44 2-18 Color Killer Register 45 2-19 Luminance Processing Control 1 Register 45 2-20 Luminance Processing Control 3 Register 46 2-21 Luminance Processing Control 3 Register 46 2-22 Luminance Brightness Register 46 2-23 Luminance Contrast Register 46 2-24 Chrominance Saturation Register 47 2-25 Chrominance Processing Control 1 Register 47 2-26 Chrominance Processing Control 1 Register 48 2-27 Component Y Contrast Register 48 2-28 Component Y Contrast Register 49 2-30 Component Y Dottrast Register 49 2-31 Component Y Dottrast Register 50 2-33 AVID Stop Pixel Register 50 2-34 HSYNC Stop Pixel Register 50 2-35 HSVNC Stop Dine Register			
2-15 Video Standard Register 43 2-16 Operation Mode Control Register 44 2-17 Autoswitch Mask Register 44 2-18 Color Killer Register 45 2-19 Luminance Processing Control 1 Register 45 2-20 Luminance Processing Control 2 Register 46 2-21 Luminance Brightness Register 46 2-22 Luminance Staturation Register 47 2-24 Chrominance Saturation Register 47 2-25 Chrominance Processing Control 1 Register 47 2-26 Chrominance Processing Control 2 Register 48 2-27 Chrominance Processing Control 2 Register 48 2-28 Component P Saturation Register 49 2-29 Component Y Brightness Register 49 2-30 Component Y Brightness Register 49 2-31 Component Y Brightness Register 50 2-32 AVID Start Pixel Register 50 2-33 AVID Stop Pixel Register 50 2-34 HSYNC Start Line Register 51 2-35 HSYNC Start Line Reg	-	-	
2-16 Operation Mode Control Register 44 2-17 Autoswitch Mask Register 44 2-18 Color Killer Register 45 2-19 Luminance Processing Control 1 Register 45 2-20 Luminance Processing Control 3 Register 46 2-21 Luminance Processing Control 3 Register 46 2-22 Luminance Processing Control 3 Register 46 2-23 Luminance Contrast Register 47 2-24 Chrominance Saturation Register 47 2-25 Chrominance Processing Control 1 Register 47 2-26 Chrominance Processing Control 1 Register 48 2-27 Chrominance Processing Control 1 Register 48 2-28 Component P Saturation Register 49 2-31 Component P Saturation Register 49 2-31 Component P Saturation Register 49 2-33 AVID Start Pikel Register 50 2-34 HSYNC Start Pikel Register 50 2-35 HSYNC Start Line Register 50 2-36 VSYNC Start Line Register 51 2-37 V			
2-17 Autoswitch Mask Register 44 2-18 Color Killer Register 45 2-19 Luminance Processing Control 1 Register 46 2-20 Luminance Processing Control 3 Register 46 2-21 Luminance Brocessing Control 3 Register 46 2-22 Luminance Brightness Register 46 2-23 Luminance Contrast Register 47 2-24 Chrominance Saturation Register 47 2-25 Chroma Hue Register 47 2-26 Chrominance Processing Control 1 Register 48 2-27 Chrominance Processing Control 2 Register 48 2-28 Component Prostauration Register 49 2-29 Component P Saturation Register 49 2-30 Component Y Sontrast Register 49 2-31 Component Y Sturation Register 49 2-32 AVID Stop Pixel Register 50 2-33 AVID Stop Pixel Register 50 2-34 HSYNC Stop Line Register 51 2-35 HSYNC Stop Line Register 51 2-36 VSINC Stop Line Register	-	-	_
2-18 Color Killer Register 45 2-19 Luminance Processing Control 1 Register 45 2-20 Luminance Processing Control 2 Register 46 2-21 Luminance Brightness Register 46 2-22 Luminance Struction Register 46 2-23 Luminance Saturation Register 47 2-24 Chrominance Saturation Register 47 2-25 Chroma Hue Register 47 2-26 Chrominance Processing Control 1 Register 48 2-27 Chrominance Processing Control 2 Register 48 2-28 Component Pr Saturation Register 49 2-29 Component Posturation Register 49 2-30 Component Pb Saturation Register 49 2-31 AVID Start Pixel Register 49 2-32 AVID Start Pixel Register 50 2-33 AVID Start Pixel Register 50 2-34 HSYNC Start Line Register 50 2-35 HSYNC Stop Line Register 51 2-36 VSINC Stop Line Register 51 2-37 VSYNC Start Line Register 52			
2-19 Luminance Processing Control 1 Register 45 2-20 Luminance Processing Control 3 Register 46 2-21 Luminance Processing Control 3 Register 46 2-22 Luminance Processing Control 3 Register 46 2-23 Luminance Contrast Register 46 2-24 Chrominance Saturation Register 47 2-25 Chrominance Processing Control 1 Register 47 2-26 Chrominance Processing Control 2 Register 48 2-27 Chrominance Processing Control 2 Register 48 2-28 Component Pr Saturation Register 49 2-30 Component PS Saturation Register 49 2-31 Component PS asturation Register 49 2-32 AVID Start Pixel Register 50 2-33 AVID Start Pixel Register 50 2-34 HSYNC Start Line Register 50 2-35 HSYNC Stop Pixel Register 51 2-36 VSIVC Start Line Register 51 2-37 VSYNC Start Line Register 52 2-40 Embedded Sync Offset Control 1 Register 52 2-41 </td <td></td> <td>-</td> <td></td>		-	
2-20 Luminance Processing Control 2 Register 46 2-21 Luminance Processing Control 3 Register 46 2-22 Luminance Brightness Register 46 2-23 Luminance Contrast Register 47 2-24 Chrominance Saturation Register 47 2-25 Chrominance Processing Control 1 Register 48 2-26 Chrominance Processing Control 2 Register 48 2-27 Chrominance Processing Control 2 Register 48 2-28 Component Pr Saturation Register 48 2-29 Component Prosturation Register 49 2-30 Component P Saturation Register 49 2-31 Component P Saturation Register 49 2-32 AVID Start Pixel Register 50 2-33 AVID Start Pixel Register 50 2-34 HSYNC Start Pixel Register 50 2-37 VSYNC Stop Pixel Register 51 2-36 VSYNC Stop Line Register 51 2-37 VSIVNC Stop Line Register 51 2-38 VBLK Start Line Register 52 2-40 Embedded Sync Offset			
2-21 Luminance Processing Control 3 Register 46 2-22 Luminance Brightness Register 46 2-23 Luminance Contrast Register 47 2-24 Chrominance Saturation Register 47 2-25 Chrom Hue Register 47 2-26 Chrominance Processing Control 1 Register 48 2-27 Chrominance Processing Control 2 Register 48 2-28 Component Pr Saturation Register 48 2-29 Component P Saturation Register 49 2-30 Component P Saturation Register 49 2-31 Component P Saturation Register 49 2-32 AVID Start Pixel Register 50 2-33 AVID Start Pixel Register 50 2-34 HSYNC Start Pixel Register 50 2-35 HSYNC Start Line Register 51 2-37 VSYNC Start Line Register 51 2-38 VBLK Start Line Register 51 2-34 HSYNC Start Line Register 52 2-40 Embedded Sync Offset Control 1 Register 52 2-41 Embedded Sync Offset Control 1 Register <td></td> <td></td> <td></td>			
2-22 Luminance Brightness Register 46 2-23 Luminance Contrast Register 47 2-24 Chrominance Saturation Register 47 2-25 Chrom Hue Register 47 2-26 Chrominance Processing Control 1 Register 48 2-27 Chrominance Processing Control 2 Register 48 2-28 Component Pr Saturation Register 48 2-29 Component P Saturation Register 49 2-30 Component P Saturation Register 49 2-31 Component Y Brightness Register 49 2-32 AVID Start Pixel Register 50 2-33 AVID Storp Pixel Register 50 2-34 HSYNC Start Pixel Register 50 2-35 HSYNC Start Line Register 50 2-36 VSYNC Stop Line Register 51 2-38 VBLK Stop Line Register 51 2-39 VBLK Stop Line Register 52 2-40 Embedded Sync Offset Control 1 Register 52 2-41 Embedded Sync Offset Control 2 Register 52 2-42 Fast-Switch Control 2 Register 5			
2-23 Luminance Contrast Register 47 2-24 Chrominance Saturation Register 47 2-25 Chrom Hue Register 47 2-26 Chrominance Processing Control 1 Register 48 2-27 Chrominance Processing Control 2 Register 48 2-28 Component Processing Control 2 Register 48 2-29 Component P Saturation Register 49 2-30 Component Y Contrast Register 49 2-31 Component Y Brightness Register 49 2-32 AVID Start Pixel Register 49 2-33 AVID Start Pixel Register 50 2-34 HSYNC Start Pixel Register 50 2-35 HSYNC Start Line Register 50 2-36 VSYNC Stop Line Register 51 2-37 VSYNC Stop Line Register 51 2-38 VBLK Stop Line Register 51 2-39 VBLK Stop Line Register 52 2-40 Embedded Sync Offset Control 1 Register 52 2-41 Embedded Sync Offset Control 2 Register 52 2-42 Fast-Switch Control Register 53<			
2-24 Chrominance Saturation Register 47 2-25 Chroma Hue Register 47 2-26 Chrominance Processing Control 1 Register 48 2-27 Chrominance Processing Control 2 Register 48 2-28 Component Pr Saturation Register 48 2-29 Component Pr Saturation Register 49 2-30 Component Pb Saturation Register 49 2-31 Component Y Brightness Register 49 2-32 AVID Stat Pixel Register 49 2-33 AVID Stat Pixel Register 50 2-34 HSYNC Start Pixel Register 50 2-35 HSYNC Stop Pixel Register 50 2-36 VSYNC Stop Line Register 51 2-37 VSYNC Stop Line Register 51 2-38 VBLK Start Line Register 51 2-39 VBLK Start Line Register 51 2-39 VBLK Start Line Register 51 2-39 VBLK Start Line Register 52 2-40 Embedded Sync Offset Control 1 Register 52 2-41 Embedded Sync Offset Control 2 Register 52			
2-25Chroma Hue Register472-26Chrominance Processing Control 1 Register482-27Chrominance Processing Control 2 Register482-28Component Pr Saturation Register482-29Component P Saturation Register492-30Component P Saturation Register492-31Component Pb Saturation Register492-32AVID Start Pixel Register492-33Component Y Brightness Register492-34HSYNC Start Pixel Register502-35HSYNC Start Pixel Register502-36VSYNC Start Line Register512-37VSYNC Start Line Register512-38VBLK Start Line Register512-39VBLK Stop Line Register522-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register532-43Fast-Switch Control 2 Register532-44SCART Delay Register532-45CTI Delay Register54	-		
2-26Chrominance Processing Control 1 Register482-27Chrominance Processing Control 2 Register482-28Component Pr Saturation Register482-29Component Y Contrast Register492-30Component Pb Saturation Register492-31Component Y Brightness Register492-32AVID Start Pixel Register502-33AVID Stop Pixel Register502-34HSYNC Start Pixel Register502-35HSYNC Start Pixel Register502-36VSYNC Start Line Register502-37VSYNC Start Line Register512-38VBLK Stop Line Register512-39VBLK Stop Line Register522-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register522-44SCART Delay Register532-44SCART Delay Register532-46CTI Control Register54		-	
2-27Chrominance Processing Control 2 Register482-28Component Pr Saturation Register492-29Component Y Contrast Register492-30Component Pb Saturation Register492-31Component Y Brightness Register492-32AVID Start Pixel Register502-33AVID Stop Pixel Register502-34HSYNC Start Pixel Register502-35HSYNC Stop Pixel Register502-36VSYNC Stop Pixel Register512-37VSYNC Stop Line Register512-38VBLK Start Line Register512-39VBLK Stop Line Register512-39VBLK Stop Line Register522-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register522-42Fast-Switch Control Register532-44SCART Delay Register532-44CTI Delay Register532-46CTI Control Register54	2-25		
2-28Component Pr Saturation Register482-29Component Y Contrast Register492-30Component Pb Saturation Register492-31Component Y Brightness Register492-32AVID Start Pixel Register502-33AVID Stop Pixel Register502-34HSYNC Start Pixel Register502-35HSYNC Stop Pixel Register512-36VSYNC Start Line Register512-37VSYNC Stop Line Register512-38VBLK Start Line Register512-39VBLK Stop Line Register522-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register522-42Fast-Switch Control 2 Register532-43Fast-Switch SCART Delay Register532-44CTI Delay Register532-46CTI Control Register54	2-26	Chrominance Processing Control 1 Register	<u>48</u>
2-29Component Y Contrast Register492-30Component Pb Saturation Register492-31Component Y Brightness Register492-32AVID Start Pixel Register502-33AVID Stop Pixel Register502-34HSYNC Start Pixel Register502-35HSYNC Stop Pixel Register502-36VSYNC Stop Pixel Register512-37VSYNC Start Line Register512-38VBLK Start Line Register512-39VBLK Stop Line Register512-30VBLK Stop Line Register522-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register522-43Fast-Switch Control Register532-44SCART Delay Register532-46CTI Control Register54	2-27	Chrominance Processing Control 2 Register	<u>48</u>
2-30Component Pb Saturation Register492-31Component Y Brightness Register492-32AVID Start Pixel Register502-33AVID Stop Pixel Register502-34HSYNC Start Pixel Register502-35HSYNC Stop Pixel Register502-36HSYNC Stop Pixel Register512-37VSYNC Stop Line Register512-38VBLK Start Line Register512-39VBLK Stop Line Register512-30VBLK Stop Line Register522-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register522-43Fast-Switch Control Register532-44SCART Delay Register532-46CTI Control Register54	2-28		
2-31Component Y Brightness Register492-32AVID Start Pixel Register502-33AVID Stop Pixel Register502-34HSYNC Start Pixel Register502-35HSYNC Stop Pixel Register512-36VSYNC Stop Line Register512-37VSYNC Stop Line Register512-38VBLK Start Line Register512-39VBLK Stop Line Register512-30VBLK Stop Line Register522-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register522-42Fast-Switch Control Register532-44SCART Delay Register532-45CTI Delay Register542-46CTI Control Register54	2-29	Component Y Contrast Register	<u>49</u>
2-32AVID Start Pixel Register502-33AVID Stop Pixel Register502-34HSYNC Start Pixel Register502-35HSYNC Stop Pixel Register512-36VSYNC Start Line Register512-37VSYNC Stop Line Register512-38VBLK Start Line Register512-39VBLK Stop Line Register512-39VBLK Stop Line Register522-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register522-42Fast-Switch Control Register532-43Fast-Switch SCART Delay Register532-44SCART Delay Register532-45CTI Delay Register542-46CTI Control Register54	2-30	Component Pb Saturation Register	<u>49</u>
2-33AVID Stop Pixel Register502-34HSYNC Start Pixel Register502-35HSYNC Stop Pixel Register512-36VSYNC Stop Pixel Register512-37VSYNC Stop Line Register512-38VBLK Start Line Register512-39VBLK Start Line Register512-39VBLK Stop Line Register522-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register522-42Fast-Switch Control Register532-43Fast-Switch SCART Delay Register532-44SCART Delay Register532-45CTI Delay Register542-46CTI Control Register54	2-31	Component Y Brightness Register	<u>49</u>
2-34HSYNC Start Pixel Register502-35HSYNC Stop Pixel Register512-36VSYNC Start Line Register512-37VSYNC Stop Line Register512-38VBLK Start Line Register512-39VBLK Stop Line Register512-39VBLK Stop Line Register522-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register522-42Fast-Switch Control Register532-43Fast-Switch SCART Delay Register532-44SCART Delay Register532-45CTI Delay Register542-46CTI Control Register54	2-32	AVID Start Pixel Register	<u>50</u>
2-35HSYNC Stop Pixel Register512-36VSYNC Start Line Register512-37VSYNC Stop Line Register512-38VBLK Start Line Register512-39VBLK Stop Line Register522-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register522-42Fast-Switch Control Register522-43Fast-Switch SCART Delay Register532-44SCART Delay Register532-45CTI Delay Register542-46CTI Control Register54	2-33	AVID Stop Pixel Register	<u>50</u>
2-36VSYNC Start Line Register512-37VSYNC Stop Line Register512-38VBLK Start Line Register512-39VBLK Stop Line Register522-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register522-42Fast-Switch Control Register522-43Fast-Switch SCART Delay Register532-44SCART Delay Register532-45CTI Delay Register542-46CTI Control Register54	2-34	HSYNC Start Pixel Register	<u>50</u>
2-37VSYNC Stop Line Register512-38VBLK Start Line Register512-39VBLK Stop Line Register522-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register522-42Fast-Switch Control Register532-43Fast-Switch SCART Delay Register532-44SCART Delay Register532-45CTI Delay Register532-46CTI Control Register54	2-35	HSYNC Stop Pixel Register	51
2-37VSYNC Stop Line Register512-38VBLK Start Line Register512-39VBLK Stop Line Register522-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register522-42Fast-Switch Control Register532-43Fast-Switch SCART Delay Register532-44SCART Delay Register532-45CTI Delay Register532-46CTI Control Register54	2-36	VSYNC Start Line Register	51
2-38VBLK Start Line Register512-39VBLK Stop Line Register522-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register522-42Fast-Switch Control Register532-43Fast-Switch SCART Delay Register532-44SCART Delay Register532-45CTI Delay Register542-46CTI Control Register54	2-37	VSYNC Stop Line Register	
2-39VBLK Stop Line Register522-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register522-42Fast-Switch Control Register532-43Fast-Switch SCART Delay Register532-44SCART Delay Register532-45CTI Delay Register532-46CTI Control Register54	2-38		
2-40Embedded Sync Offset Control 1 Register522-41Embedded Sync Offset Control 2 Register522-42Fast-Switch Control Register532-43Fast-Switch SCART Delay Register532-44SCART Delay Register532-45CTI Delay Register532-46CTI Control Register54	2-39		
2-41Embedded Sync Offset Control 2 Register522-42Fast-Switch Control Register532-43Fast-Switch SCART Delay Register532-44SCART Delay Register532-45CTI Delay Register542-46CTI Control Register54	2-40		
2-42Fast-Switch Control Register532-43Fast-Switch SCART Delay Register532-44SCART Delay Register532-45CTI Delay Register542-46CTI Control Register54	2-41	-	
2-43 Fast-Switch SCART Delay Register 53 2-44 SCART Delay Register 53 2-45 CTI Delay Register 54 2-46 CTI Control Register 54			
2-44 SCART Delay Register 53 2-45 CTI Delay Register 54 2-46 CTI Control Register 54			
2-45 CTI Delay Register 54 2-46 CTI Control Register 54			
2-46 CTI Control Register			

TVP5146M2

SLES141H-JULY 2005-REVISED FEBRUARY 2012

2-47	Brightness and Contrast Range Extender Register	<u>54</u>
2-48	Sync Control Register	<u>55</u>
2-49	Output Formatter Control 1 Register	<u>55</u>
2-50	Output Formatter Control 2 Register	<u>56</u>
2-51	Output Formatter Control 3 Register	<u>56</u>
2-52	Output Formatter Control 4 Register	<u>57</u>
2-53	Output Formatter Control 5 Register	<u>58</u>
2-54	Output Formatter Control 6 Register	<u>59</u>
2-55	Clear Lost Lock Detect Register	<u>59</u>
2-56	Status 1 Register	<u>60</u>
2-57	Status 2 Register	<u>61</u>
2-58	AGC Gain Status Register	61
2-59	Video Standard Status Register	62
2-60	GPIO Input 1 Register	62
2-61	GPIO Input 2 Register	63
2-62	Vertical Line Count Register	63
2-63	AFE Coarse Gain for CH 1 Register	64
2-64	AFE Coarse Gain for CH 2 Register	
2-65	AFE Coarse Gain for CH 3 Register	
2-66	AFE Coarse Gain for CH 4 Register	
2-67	AFE Fine Gain for Pb_B Register	
2-68	AFE Fine Gain for Y_G_Chroma Register	66
2-69	AFE Fine Gain for Pr_R Register	
2-70	AFE Fine Gain for CVBS_Luma Register	
2-71	F-Bit and V-Bit Decode Control 1 Register	
2-72	Back-End AGC Control Register	
2-73	AGC Decrement Speed Register	
2-74	ROM Version Register	
2-75	RAM Version MSB Register	
2-76	AGC White Peak Processing Register	
2-77	F-Bit and V-Bit Control 2 Register	
2-78	VCR Trick Mode Control Register	
2-79	Horizontal Shake Increment Register	
2-80	AGC Increment Speed Register	72
2-81	AGC Increment Delay Register	72
2-82	Chip ID MSB Register	72
2-83	Chip ID LSB Register	72
2-84	RAM Version LSB Register	73
2-85	Color PLL Speed Control Register	73
2-86	Status Request Register	<u>73</u>
2-87	Vertical Line Count Register	<u>73</u>
2-88	AGC Decrement Delay Register	<u>74</u>
2-89	VDP TTX Filter and Mask Register	74
2-05	VDP TTX Filter Control Register	75
2-90	VDP FIFO Word Count Register	<u>76</u>
2-91	VDP FIFO Interrupt Threshold Register	77
2-92	VDP FIFO Interrupt Threshold Register	77
2-93 2-94	VDP FIFO Output Control Register	77
2-34		<u>''</u>

www.ti.com

SLES141H-JULY 2005-REVISED FEBRUARY 2012

2-95	VDP Line Number Interrupt Register	<u>77</u>
2-96	VDP Pixel Alignment Register	<u>78</u>
2-97	VDP Line Start Register	<u>78</u>
2-98	VDP Line Stop Register	<u>78</u>
2-99	VDP Global Line Mode Register	<u>78</u>
2-100	VDP Full Field Enable Register	
2-101	VDP Full Field Mode Register	<u>79</u>
2-102	VBUS Data Access With No VBUS Address Increment Register	<u>79</u>
2-103	VBUS Data Access With VBUS Address Increment Register	<u>79</u>
2-104	FIFO Read Data Register	<u>79</u>
2-105	VBUS Address Register	<u>80</u>
2-106	Interrupt Raw Status 0 Register	<u>80</u>
2-107	Interrupt Raw Status 1 Register	<u>81</u>
2-108	Interrupt Status 0 Register	<u>82</u>
2-109	Interrupt Status 1 Register	<u>83</u>
2-110	Interrupt Mask 0 Register	<u>84</u>
2-111	Interrupt Mask 1 Register	<u>85</u>
2-112	Interrupt Clear 0 Register	<u>86</u>
2-113	Interrupt Clear 1 Register	<u>87</u>
2-114	VDP Closed Caption Data Register	<u>88</u>
2-115	VDP WSS Data Register	<u>88</u>
2-116	VDP VITC Data Register	<u>89</u>
2-117	VDP V-Chip TV Rating Block 1 Register	<u>89</u>
2-118	VDP V-Chip TV Rating Block 2 Register	<u>89</u>
2-119	VDP V-Chip TV Rating Block 3 Register	<u>90</u>
2-120	VDP V-Chip MPAA Rating Data Register	<u>90</u>
2-121	VDP General Line Mode and Line Address Register	<u>91</u>
2-122	VDP VPS/Gemstar Data Register	<u>92</u>
2-123	Interrupt Configuration Register	<u>92</u>

www.ti.com

NTSC/PAL/SECAM 4×10-Bit Digital Video Decoder With Macrovision[™] Detection, YPbPr Inputs, 5-Line Comb Filter, and SCART Support

Check for Samples: TVP5146M2

1 Introduction

- 1.1 Features
- Four 30-MSPS 11-Bit A/D Channels With Programmable Gain Control
- Supports NTSC (J, M, 4.43), PAL (B, D, G, H, I, M, N, Nc, 60), SECAM (B, D, G, K, K1, L), CVBS, and S-Video
- Supports Analog SD YPbPr Component and SCART (RGB/YPbPr + CVBS) Video Formats With Embedded Sync
- Ten Analog Video Input Terminals for Multisource Connection
- User-Programmable Video Output Formats
 - 10-Bit ITU-R BT.656 4:2:2 YCbCr With Embedded Syncs
 - 10-Bit 4:2:2 YCbCr With Separate Syncs
 - 20-Bit 4:2:2 YCbCr With Separate Syncs
 - 2× Sampled Raw VBI Data in Active Video During Vertical Blanking Period
 - Sliced VBI Data During Vertical Blanking Period or Active Video Period (Full-Field Mode)
- HSYNC/VSYNC Outputs With Programmable Position, Polarity, Width, and Field ID (FID) Output
- Component Video Processing
 - Gain (Contrast) and Offset (Brightness) Adjustments
 - Automatic Component Video Detection (525/625)
 - Color Space Conversion from RGB to YCbCr
- Composite and S-Video Processing
 - Adaptive 2-D 5-Line Adaptive Comb Filter for Composite Video Inputs; Chroma-Trap Available
 - Automatic Video Standard Detection (NTSC/PAL/SECAM) and Switching
 - Luma Peaking With Programmable Gain
 - Patented Chroma Transient Improvement (CTI) Circuit

- Patented Architecture for Locking to Weak, Noisy, or Unstable Signals
- Single 14.31818-MHz Reference Crystal for All Standards
- Line-Locked Internal Pixel Sampling Clock Generation With Horizontal and Vertical Lock Signal Outputs
- Genlock Output RTC Format for Downstream Video Encoder Synchronization
- Certified Macrovision[™] Copy Protection
 Detection
- Available in Commercial (0°C to 70°C) and Industrial (-40°C to 85°C) Temperature Ranges
- VBI Data Processor
 - Teletext (NABTS, WST)
 - CC and Extended Data Service (EDS)
 - Wide Screen Signaling (WSS)
 - Copy Generation Management System (CGMS)
 - Video Program System (VPS/PDC)
 - Vertical Interval Time Code (VITC)
 - Gemstar[™] 1×/2× Mode
 - V-Chip Decoding
 - Register Readback of CC, WSS (CGMS), VPS/PDC, VITC and Gemstar 1×/2× Sliced Data
- I²C Host Port Interface
- Reduced Power Consumption: 1.8-V Digital Core, 3.3-V Digital I/O, and 1.8-V Analog Core With Power-Save and Power-Down Modes
- 80-Terminal TQFP PowerPAD[™] Package
- RGB Sync on Green Not Currently Supported, All References to "RGB" in This Data Manual Imply "SCART RGB"

Gemstar is a trademark of Gemstar-TV Guide International. Macrovision is a trademark of Macrovision Corporation.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PowerPAD is a trademark of Texas Instruments.

www.ti.com

1.2 Description

The TVP5146M2 device is a high-quality single-chip digital video decoder that digitizes and decodes all popular baseband analog video formats into digital component video. The TVP5146M2 decoder supports the analog-to-digital (A/D) conversion of component RGB and YPbPr signals, as well as the A/D conversion and decoding of NTSC, PAL, and SECAM composite and S-Video into component YCbCr. This decoder includes four 11-bit 30-MSPS A/D converters (ADCs). Preceding each ADC in the device, the corresponding analog channel contains an analog circuit that clamps the input to a reference voltage and applies a programmable gain and offset. A total of ten video input terminals can be configured to a combination of RGB, YPbPr, CVBS, or S-Video video inputs.

Component, composite, or S-Video signals are sampled at 2× the ITU-R BT.601 clock frequency, line locked, and are then decimated to the 1× pixel rate. CVBS decoding utilizes 5-line adaptive comb filtering for both the luma and chroma data paths to reduce both cross-luma and cross-chroma artifacts. A chroma trap filter is also available. On CVBS and S-Video inputs, the user can control video characteristics, such as contrast, brightness, saturation, and hue via an I²C host port interface. Furthermore, luma peaking (sharpness) with programmable gain is included, as well as a patented chroma transient improvement (CTI) circuit.

A built-in color space converter is applied to decoded component RGB data.

Two output formats can be selected: 20-bit 4:2:2 YCbCr or 10-bit 4:2:2 YCbCr.

The TVP5146M2 decoder generates synchronization, blanking, field, active video window, horizontal and vertical syncs, clock, genlock (for downstream video encoder synchronization), host CPU interrupt, and programmable logic I/O signals, in addition to digital video outputs.

The TVP5146M2 decoder includes methods for advanced vertical blanking interval (VBI) data retrieval. The VBI data processor (VDP) slices, parses, and performs error checking on teletext, closed caption (CC), and other VBI data. A built-in FIFO stores up to 11 lines of teletext data and, with proper host port synchronization, full-screen teletext retrieval is possible. The TVP5146M2 decoder can pass through the output formatter 2× the sampled raw luma data for host-based VBI processing.

The main blocks of the TVP5146M2 decoder include:

- · Robust sync detection for weak and noisy signals as well as VCR trick modes
- Y/C separation by 2-D 5-line adaptive comb or chroma trap filter
- Fast-switch input for pixel-by-pixel switching between CVBS and YPbPr/RGB component video inputs (SCART support)
- Four 11-bit 30-MSPS ADCs with analog preprocessors [clamp and automatic gain control (AGC)]
- Luminance processor
- Chrominance processor
- Component processor
- Clock/timing processor and power-down control
- Software-controlled power-saving standby mode
- Output formatter
- I²C host port interface
- VBI data processor
- Macrovision[™] copy protection detection circuit (Type 1, 2, 3, and separate color stripe detection)
- 3.3-V tolerant digital I/O ports

SLES141H-JULY 2005-REVISED FEBRUARY 2012

1.3 Applications

- Digital TV
- LCD TV/monitors
- DVD-R
- PVR
- PC video cards
- Video capture/video editing
- Video conferencing
- Automotive
- Industrial

1.4 Related Products

- TVP5150AM1
- TVP5151
- TVP5154A
- TVP5158
- TVP5160
- TVP5147M1

1.5 Document Conventions

Throughout this data manual, several conventions are used to convey information. These conventions are listed below:

- To identify a binary number or field, a lower case b follows the numbers. For example: 000b is a 3-bit binary field.
- To identify a hexadecimal number or field, a lower case h follows the numbers. For example: 8AFh is a 12-bit hexadecimal field.
- All other numbers that appear in this document that do not have either a b or h following the number are assumed to be decimal format.
- If the signal or terminal name has a bar above the name (for example, RESETB), then this indicates the logical NOT function. When asserted, this signal is a logic low, 0, or 0b.
- RSVD indicates that the referenced item is reserved.

1.6 Ordering Information

T _A	PACKAGED DEVICES ^{(1) (2)} 80-TERMINAL PLASTIC FLAT-PACK PowerPAD™ PACKAGE	PACKAGE OPTION	
0°C to 70°C	TVP5146M2PFP	Tray	
0010700	TVP5146M2PFPR	Tape and reel	
-40°C to 85°C	TVP5146M2IPFP	Tray	
-40 0 10 85 0	TVP5146M2IPFPR	Tape and reel	

 For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at <u>www.ti.com</u>.

(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/package.

www.ti.com

INSTRUMENTS

Texas

1.7 Functional Block Diagram

Figure 1-1. Functional Block Diagram

SLES141H-JULY 2005-REVISED FEBRUARY 2012

1.8 Terminal Assignments

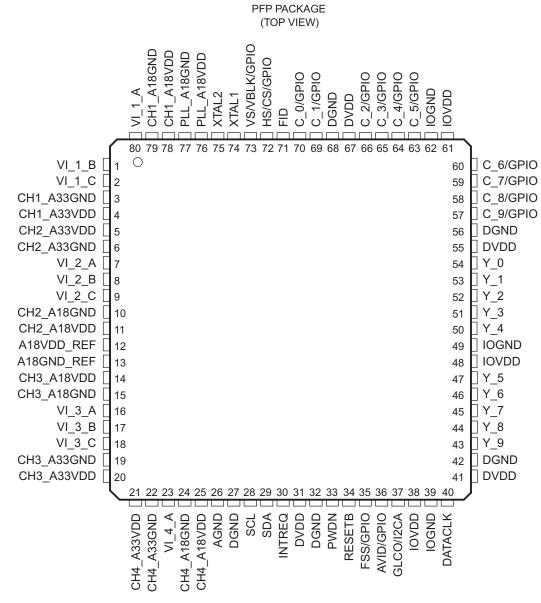


Figure 1-2. Terminal Assignments Diagram

www.ti.com

1.9 Terminal Functions

Table 1-1. Terminal Functions

TERMINAL			DESCRIPTION					
NAME NO.		I/O						
Analog Video	1 1							
VI_1_A	80							
VI_1_B	1							
VI_1_C	2		VI_1_x: Analog video input for CVBS/Pb/B/C					
VI_2_A	7		VI_2_x: Analog video input for CVBS/Y/G VI_3_x: Analog video input for CVBS/Pr/R/C					
VI_2_B	8		VI_4_A: Analog video input for CVBS/Y					
VI_2_C	9	I	Up to 10 composite, 4 S-video, and 2 composite or 3 component video inputs (or a combination thereof) can be supported.					
VI_3_A	16		The inputs must be ac coupled. The recommended coupling capacitor is 0.1 μ F.					
VI_3_B	17		The possible input configurations are listed in the input select register at I ² C subaddress 00h (see Table 2-12).					
VI_3_C	18							
VI_4_A	23							
Clock Signals								
DATACLK	40	0	Line-locked data output clock					
XTAL1	74	I	External clock reference. It can be connected to an external oscillator with a 1.8-V compatible clock signal or to a 14.31818-MHz crystal oscillator.					
XTAL2	75	0	External clock reference. Not connected if XTAL1 is driven by an external single-ended oscillator.					
Digital Video	i							
C_[9:0]/GPIO	57, 58, 59, 60, 63, 64, 65, 66, 69, 70	0	Digital video output of CbCr, C_9 is MSB and C_0 is LSB. C_0 and C_[9-2] can be used as programmable general purpose I/O. C_1 (pin 69) requires an external pulldown resistor and should not be used for general purpose I/O.					
Y_[9:0]	43, 44, 45, 46, 47, 50, 51, 52, 53, 54	0	Digital video output of Y/YCbCr; Y_9 is MSB and Y_0 is LSB. For the 8-bit mode, the two LSBs are ignored. Unused outputs can be left unconnected.					
Miscellaneous S	Signals							
FSS/GPIO 35 I/O (YF		I/O	Fast-switch (blanking) input. Switching signal between the synchronous component video (YPbPr/RGB) and the composite video input. Programmable general-purpose I/O					
GLCO/I2CA	37	I/O	Genlock control output (GLCO) During reset, this terminal is an input used to program the I ² C address LSB.					
INTREQ	30	0	Interrupt request					
PWDN	33	I	Power-down input: 1 = Power down 0 = Normal mode					
RESETB	34	Ι	Reset, active low					
Host Interface								
SCL	28	I/O	I ² C clock					
SDA	29	I/O	I ² C data bus					

TVP5146M2

SLES141H-JULY 2005-REVISED FEBRUARY 2012

www.ti.com

Table 1-1. Terminal Functions (continued)

TERMINA	TERMINAL					
NAME NO.		I/O	DESCRIPTION			
Power Supplies						
AGND 26 G		G	Analog ground. Connect to analog ground.			
A18GND_REF	13	G	Analog 1.8-V return			
A18VDD_REF	12	Р	Analog power for reference 1.8 V			
CH1_A18GND	79					
CH2_A18GND	10					
CH3_A18GND	15	G	Analog 1.8-V return			
CH4_A18GND	24					
CH1_A18VDD	78					
CH2_A18VDD	11	-				
CH3_A18VDD	14	Р	Analog power. Connect to 1.8 V.			
CH4_A18VDD	25					
CH1_A33GND	3					
CH2_A33GND	6					
CH3_A33GND	19	G	Analog 3.3-V return			
CH4_A33GND	22					
CH1_A33VDD	4					
CH2_A33VDD	5	Р				
CH3_A33VDD	20	Р	Analog power. Connect to 3.3 V.			
CH4_A33VDD	21					
DGND	27, 32, 42, 56, 68	G	Digital return			
DVDD	31, 41, 55, 67	Р	Digital power. Connect to 1.8 V.			
IOGND	39, 49, 62	G	Digital power return			
IOVDD	38, 48, 61	Р	Digital power. Connect to 3.3 V or less for reduced noise.			
PLL_A18GND	77	G	Analog power return			
PLL_A18VDD	76	Р	Analog power. Connect to 1.8 V.			
Sync Signals						
HS/CS/GPIO	72	I/O	Horizontal sync output or digital composite sync output Programmable general-purpose I/O			
VS/VBLK/GPIO	73	I/O	Vertical sync output (for modes with dedicated VSYNC) or VBLK output Programmable general-purpose I/O			
FID	71	I/O	Odd/even field indicator output. This terminal needs a pulldown resistor (see Figure 5-1).			
AVID/GPIO	36	I/O	Active video indicator output Programmable general-purpose I/O			

www.ti.com

2 Functional Description

2.1 Analog Processing and A/D Converters

Figure 2-1 shows a functional diagram of the analog processors and ADCs. This block provides the analog interface to all video inputs. It accepts up to ten inputs and performs source selection, video clamping, video amplification, A/D conversion, and gain and offset adjustments to center the digitized video signal.

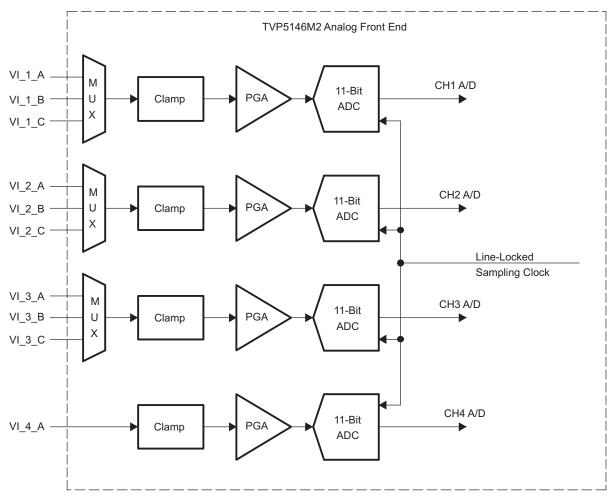


Figure 2-1. Analog Processors and A/D Converters

2.1.1 Video Input Switch Control

The TVP5146M2 decoder has four analog channels that accept up to ten video inputs. The user can configure the internal analog video switches via the I²C interface. The ten analog video inputs can be used for different input configurations, some of which are:

• Up to ten selectable individual composite video inputs, as well as other combinations of YPbPr, S-Video, and SCART can be supported (see Table 2-12)

The input selection is performed by the input select register at I²C subaddress 00h (see Table 2-12).

2.1.2 Analog Input Clamping

An internal clamping circuit restores the ac-coupled video signal to a fixed dc level. The clamping circuit provides line-by-line restoration of the video sync level to a fixed dc reference voltage. The selection between bottom and mid clamp is performed automatically by the TVP5146M2 decoder.

2.1.3 Automatic Gain Control

The TVP5146M2 decoder uses four programmable gain amplifiers (PGAs), one per channel. The PGA can scale a signal with a voltage-input compliance of 0.5 V_{PP} to 2 V_{PP} to a full-scale 10-bit A/D output code range. A 4-bit code sets the coarse gain with individual adjustment per channel. Minimum gain corresponds to a code 0x0 (2-VPP full-scale input, –6-dB gain) while maximum gain corresponds to code 0xF (0.5-VPP full scale, +6-dB gain). The TVP5146M2 decoder also has 12-bit fine gain controls for each channel and applies them independently to coarse gain controls. For composite video, the input video signal amplitude can vary significantly from the nominal level of 1 V_{PP} . The TVP5146M2 decoder can adjust its PGA setting automatically: an AGC can be enabled and can adjust the signal amplitude such that the maximum range of the ADC is reached without clipping. Some nonstandard video signals contain peak white levels that saturate the ADC. In these cases, the AGC automatically cuts back gain to avoid clipping. If the AGC is on, then the TVP5146M2 decoder can read the gain currently being used.

The TVP5146M2 AGC comprises the front-end AGC before Y/C separation and the back-end AGC after Y/C separation. The back-end AGC restores the optimum system gain whenever an amplitude reference, such as the composite peak (which is only relevant before Y/C separation), forces the front-end AGC to set the gain too low. The front-end and back-end AGC algorithms can use up to four amplitude references: sync height, color burst amplitude, composite peak, and luma peak.

The specific amplitude references being used by the front-end and back-end AGC algorithms can be independently controlled using the AGC white peak processing register located at subaddress 74h. The TVP5146M2 gain increment speed and gain increment delay can be controlled using the AGC increment speed register located at subaddress 78h and the AGC increment delay register located at subaddress 79h, respectively.

2.1.4 ADCs

All ADCs have a resolution of 11 bits and can operate up to 30 MSPS. All A/D channels receive an identical clock from the on-chip phase-locked loop (PLL) at a frequency between 24 MHz and 30 MHz. All ADC reference voltages are generated internally.

2.2 Digital Video Processing

Figure 2-2 is a block diagram of the TVP5146M2 digital video decoder processor. This processor receives digitized video signals from the ADCs and performs composite processing for CVBS and S-Video inputs, YCbCr signal enhancements for CVBS and S-Video inputs, and YPbPr/RGB processing for component video inputs. It also generates horizontal and vertical syncs and other output control signals, such as genlock for CVBS and S-Video inputs. Additionally, it can provide field identification, horizontal and vertical lock, vertical blanking, and active video window indication signals. The digital data output can be

TEXAS INSTRUMENTS

SLES141H-JULY 2005-REVISED FEBRUARY 2012

www.ti.com

programmed to two formats: 20-bit 4:2:2 with external syncs or 10-bit 4:2:2 with embedded/separate syncs. The circuit detects pseudosync pulses, AGC pulses, and color striping in Macrovision-encoded copy-protected material. Information present in the VBI interval can be retrieved and either inserted in the ITU-R BT.656 output as ancillary data or stored in internal FIFO and/or registers for retrieval via the host port interface.

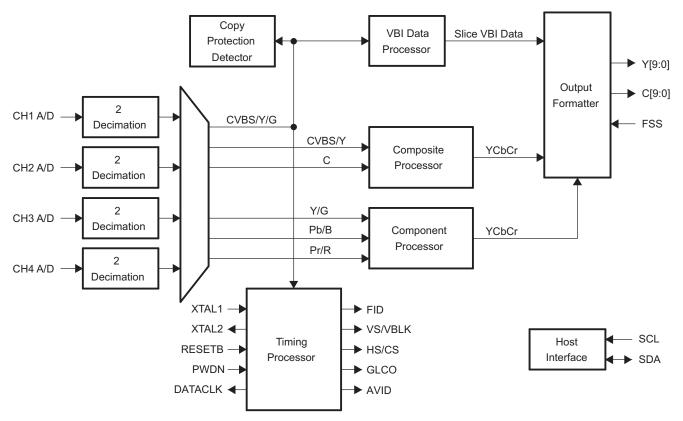


Figure 2-2. Digital Video Processing Block Diagram

2.2.1 2x Decimation Filter

All input signals are oversampled by a factor of two (27 MHz). The A/D outputs first pass through decimation filters that reduce the data rate to 1× the pixel rate. The decimation filter is a half-band filter. Oversampling and decimation filtering can effectively increase the overall signal-to-noise ratio by 3 dB.

2.2.2 Composite Processor

Figure 2-3 is a block diagram of the TVP5146M2 digital composite video processing circuit. This circuit receives a digitized composite or S-Video signal from the ADCs and performs Y/C separation (bypassed for S-Video input), chroma demodulation for PAL/NTSC and SECAM, and YUV signal enhancements.

The 10-bit composite video is multiplied by the subcarrier signals in the quadrature demodulator to generate color difference signals U and V. The U and V signals are then sent to low-pass filters to achieve the desired bandwidth. An adaptive 5-line comb filter separates UV from Y based on the unique property of color phase shifts from line to line. The chroma is remodulated through a quadrature modulator and subtracted from line-delayed composite video to generate luma. This form of Y/C separation is completely complementary, thus there is no loss of information. However, in some applications, it is desirable to limit the U/V bandwidth to avoid crosstalk. In that case, notch filters can be turned on. To accommodate some viewing preferences, a peaking filter is also available in the luma path. Contrast, brightness, sharpness, hue, and saturation controls are programmable through the host port.

TVP5146M2

www.ti.com

SLES141H-JULY 2005-REVISED FEBRUARY 2012

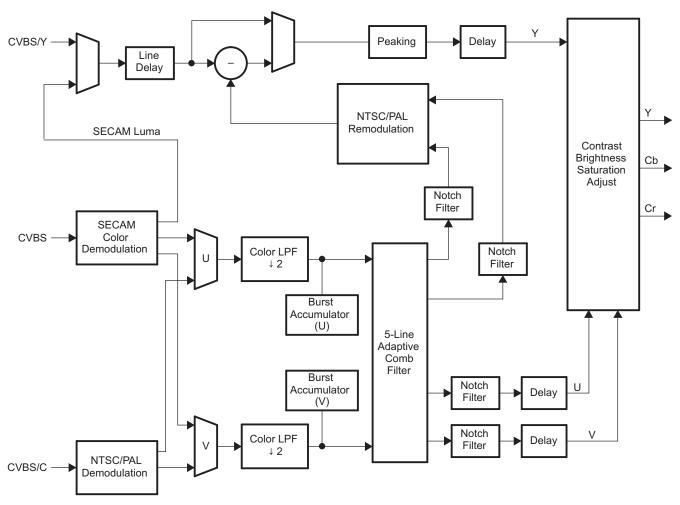


Figure 2-3. Composite and S-Video Processor

TEXAS INSTRUMENTS

www.ti.com

2.2.2.1 Color Low-Pass Filter

High filter bandwidth preserves sharp color transitions and produces crisp color boundaries. However, for video sources that have asymmetrical U and V side bands, it is desirable to limit the filter bandwidth to avoid UV crosstalk. The color low-pass filter bandwidth is programmable to enable one of the three notch filters. Figure 2-4 and Figure 2-5 represent the frequency responses of the wideband color low-pass filters.

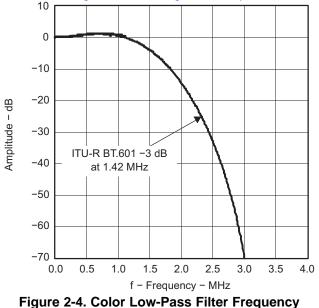


Figure 2-4. Color Low-Pass Filter Frequency Response

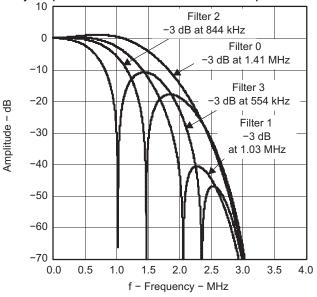


Figure 2-5. Color Low-Pass Filter With Filter Characteristics, NTSC/PAL ITU-R BT.601 Sampling

2.2.2.2 Y/C Separation

Y/C separation can be done using adaptive 5-line (5-H delay) comb filters or a chroma trap filter. The comb filter can be selectively bypassed in the luma or chroma path. If the comb filter is bypassed in the luma path, chroma trap filters are used which are shown in Figure 2-6 and Figure 2-7. The TI patented adaptive comb filter algorithm reduces artifacts such as hanging dots at color boundaries. It detects and properly handles false colors in high frequency luminance images, such as a multiburst pattern or circle pattern. Adaptive comb filtering is the recommended mode of operation.

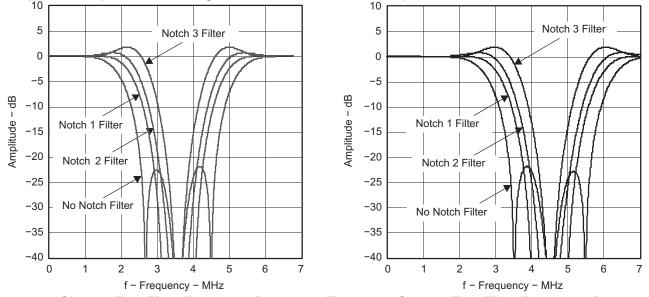


Figure 2-6. Chroma Trap Filter Frequency Response, Figure 2-7. Chroma Trap Filter Frequency Response, NTSC ITU-R BT.601 Sampling PAL ITU-R BT.601 Sampling

2.2.3 Luminance Processing

The digitized composite video signal passes through either a luminance comb filter or a chroma trap filter, either of which removes chrominance information from the composite signal to generate a luminance signal. The luminance signal is then fed into the input of a peaking circuit. Figure 2-8 illustrates the basic functions of the luminance data path. In the case of S-Video, the luminance signal bypasses the comb filter or chroma trap filter and is fed directly to the circuit. High-frequency components of the luminance signal are enhanced by a peaking filter (sharpness). Figure 2-9 shows the characteristics of the peaking filter at four different gain settings that are programmable via the host port.

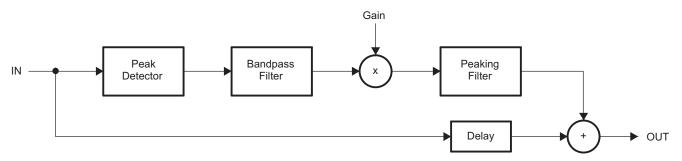


Figure 2-8. Luminance Edge-Enhancer Peaking Block Diagram

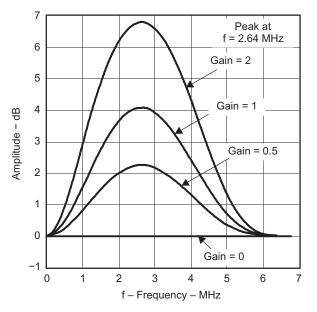


Figure 2-9. Peaking Filter Response, NTSC/PAL ITU-R BT.601 Sampling

2.2.4 Color Transient Improvement (CTI)

CTI enhances horizontal color transients by delay modulation for both color difference signals. The operation must be performed only on YCbCr-formatted data. The color difference signal transition points are maintained, but the edges are enhanced for signals that have bandwidth-limited color components (for example, CVBS and S-Video).

2.2.5 Component Video Processor

The component video processing block supports a user-selectable contrast, brightness, and saturation adjustment in YCbCr output formats. For YCbCr output formats, gain and offset values are applied to the luma data path to map the pixel values to the correct output range (for 10-bit $Y_{min} = 64$ and $Y_{max} = 940$), and to provide a means of adjusting contrast and brightness. For Y, digital contrast (gain) and brightness (offset) factors can vary from 0 to 255. The contrast control adjusts the amplitude range of the Y output centered at the midpoint of the output code range. The limit block limits the output to the ITU-R BT.601 range (Y_{min} to Y_{max}) or an extended range, depending on a user setting.

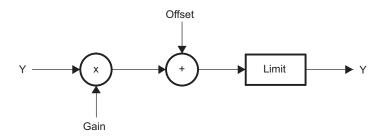


Figure 2-10. Y Component Gain, Offset, Limit

For CbCr components, a saturation (gain) factor is applied to the CbCr inputs to map them to the CbCr output code range and provide saturation control. Similarly, the limit block can limit CbCr outputs to a valid range:

 $Cb, Cr_{min} = 64 / Cb, Cr_{max} = 960$

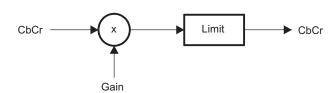


Figure 2-11. CbCr Component Gain, Offset, Limit

2.2.6 Color Space Conversion

The formulas for RGB to YCbCr conversion are given as:

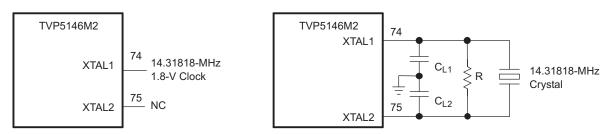
Y = 0.299 × R + 0.587 × G + 0.114 × B Cb = -0.172 × R - 0.339 × G + 0.511 × B + 512 Cr = 0.511 × R - 0.428 × G - 0.083 × B + 512

2.3 Clock Circuits

An internal line-locked PLL generates the system and pixel clocks. A 14.31818-MHz clock is required to drive the PLL. This can be input to the TVP5146M2 decoder at the 1.8-V level on terminal 74 (XTAL1), or a crystal of 14.31818-MHz fundamental resonant frequency can be connected across terminals 74 and 75 (XTAL2). If a parallel resonant circuit is used as shown in Figure 2-12, then the external capacitors must have the following relationship:

$$C_{L1} = C_{L2} = 2C_L - C_{STRAY}$$

Where.


C_{STRAY} is the terminal capacitance with respect to ground

CL is the crystal load capacitance specified by the crystal manufacturer

Figure 2-12 shows the reference clock configurations. The TVP5146M2 decoder generates the DATACLK signal used for clocking data.

Copyright © 2005–2012, Texas Instruments Incorporated

(1)

NOTE: The resistor (R) in parallel with the crystal is recommended to support a wide range of crystal types. A 100-kΩ resistor may be used for most crystal types.

Figure 2-12. Reference Clock Configurations

2.4 **Real-Time Control (RTC)**

Although the TVP5146M2 decoder is a line-locked system, the color-burst information is used to determine accurately the color subcarrier frequency and phase. This ensures proper operation with nonstandard video signals that do not follow exactly the required frequency multiple between color subcarrier frequency and video line frequency. The frequency control word of the internal color subcarrier PLL and the subcarrier reset bit are transmitted via terminal 37 (GLCO) for optional use in an end system (for example, by a video encoder). The frequency control word is a 23-bit binary number. The instantaneous frequency of the color subcarrier can be calculated from the following equation: (2)

$$F_{PLL} = (F_{ctrl} / 2^{23}) \times F_{sclk}$$

Where,

F_{PLL} is the frequency of the subcarrier PLL

F_{ctrl} is the 23-bit PLL frequency control word

F_{sclk} is two times the pixel frequency

Figure 2-13 shows the detailed timing diagram.

NOTE: RTC reset bit (\overline{R}) is active-low, Sequence bit (S) PAL: 1 = (R-Y) line normal, 0 = (R-Y) line inverted, NTSC: 1 = no change

Figure 2-13. RTC Timing

2.5 Output Formatter

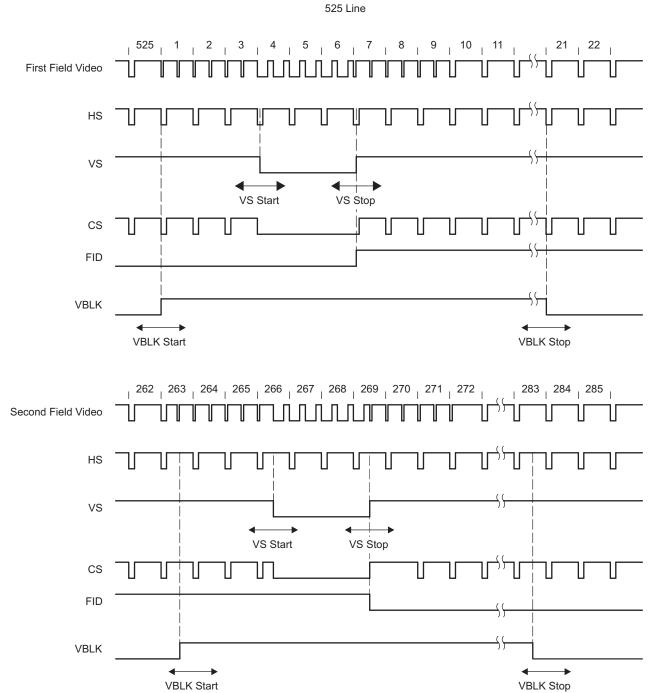
The output formatter sets how the data is formatted for output on the TVP5146M2 output buses. Table 2-1 shows the available output modes.

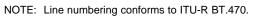
TERMINAL NAME	TERMINAL NUMBER	10-Bit 4:2:2 YCbCr	20-Bit 4:2:2 YCbCr
Y_9	43	Cb9, Y9, Cr9	Y9
Y_8	44	Cb8, Y8, Cr8	Y8
Y_7	45	Cb7, Y7, Cr7	Y7
Y_6	46	Cb6, Y6, Cr6	Y6
Y_5	47	Cb5, Y5, Cr5	Y5
Y_4	50	Cb4, Y4, Cr4	Y4
Y_3	51	Cb3, Y3, Cr3	Y3
Y_2	52	Cb2, Y2, Cr2	Y2
Y_1	53	Cb1, Y1, Cr1	Y1
Y_0	54	Cb0, Y0, Cr0	Y0
C_9	57		Cb9, Cr9
C_8	58		Cb8, Cr8
C_7	59		Cb7, Cr7
C_6	60		Cb6, Cr6
C_5	63		Cb5, Cr5
C_4	64		Cb4, Cr4
C_3	65		Cb3, Cr3
C_2	66		Cb2, Cr2
C_1	69		Cb1, Cr1
C_0	70		Cb0, Cr0

Table 2-1. Output Format

STANDARDS	PIXELS PER LINE	ACTIVE PIXELS PER LINE	LINES PER FRAME	PIXEL FREQUENCY (MHz)	COLOR SUBCARRIER FREQUENCY (MHz)	HORIZONTAL LINE RATE (kHz)
601 Sampling						
NTSC-J, M	858	720	525	13.5	3.579545	15.73426
NTSC-4.43	858	720	525	13.5	4.43361875	15.73426
PAL-M	858	720	525	13.5	3.57561149	15.73426
PAL-60	858	720	525	13.5	4.43361875	15.73426
PAL-B, D, G, H, I	864	720	625	13.5	4.43361875	15.625
PAL-N	864	720	625	13.5	4.43361875	15.625
PAL-Nc	864	720	625	13.5	3.58205625	15.625
SECAM	864	720	625	13.5	Dr = 4.406250 Db = 4.250000	15.625

www.ti.com


2.5.1 Fast Switches for SCART


The TVP5146M2 decoder supports the SCART interface used in European audio/video end equipment to carry composite video, S-Video, and RGB video on the same cable. If composite video and RGB video are present simultaneously on the video terminals assigned to a SCART interface, the TVP5146M2 decoder assumes they are pixel synchronous to each other. The timing for both composite video and RGB video is obtained from the composite source, and its derived clock is used to sample RGB video as well. The fast-switch input terminal allows switching between these two input video sources on a pixel-by-pixel basis. The fast switch is a hard switch; there is no alpha blending between both sources.

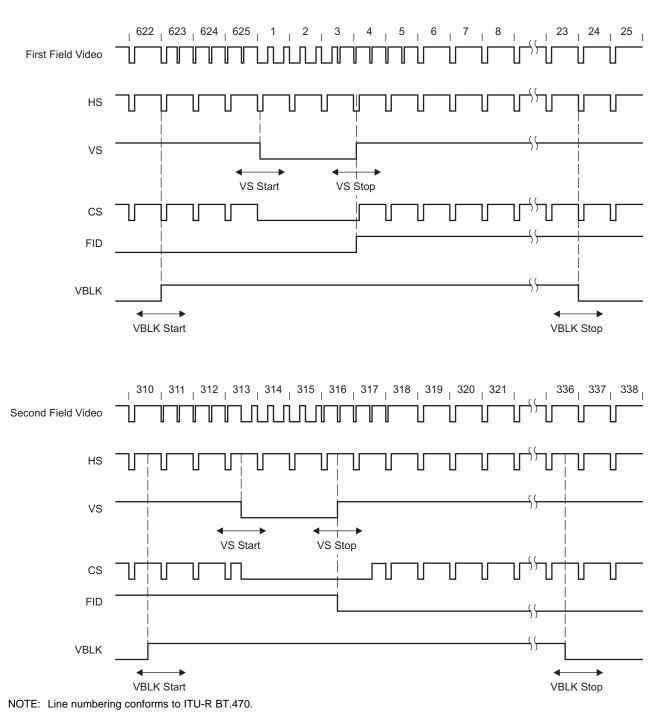
2.5.2 Separate Syncs

VS, HS, and VBLK are independently software programmable to a 1× pixel count. This allows any possible alignment to the internal pixel count and line count. The default settings for 525-line and 625-line video outputs are given in Figure 2-14 and Figure 2-15. FID changes at the same transient time when the trailing edge of vertical sync occurs. The polarity of FID is programmable by an I²C interface.

ÈXAS

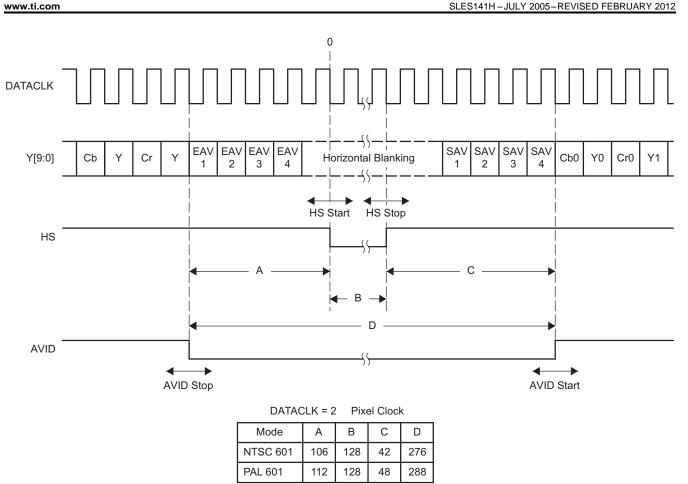
www.ti.com

INSTRUMENTS


TVP5146M2

SLES141H-JULY 2005-REVISED FEBRUARY 2012

TEXAS INSTRUMENTS


www.ti.com

NOTE: ITU-R BT.656 10-bit 4:2:2 timing with 2× pixel clock reference

EXAS

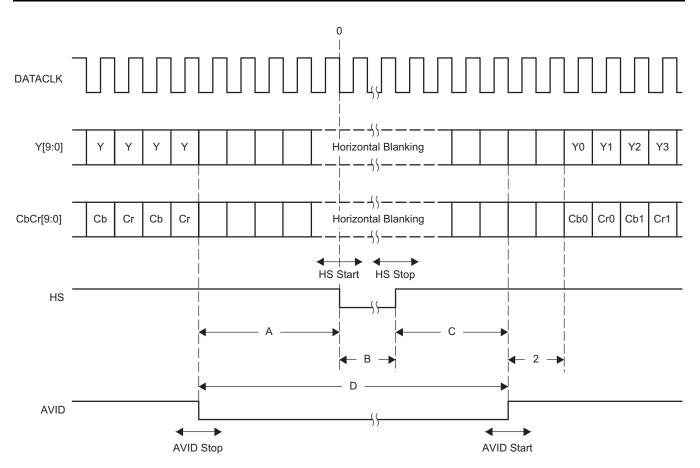

INSTRUMENTS

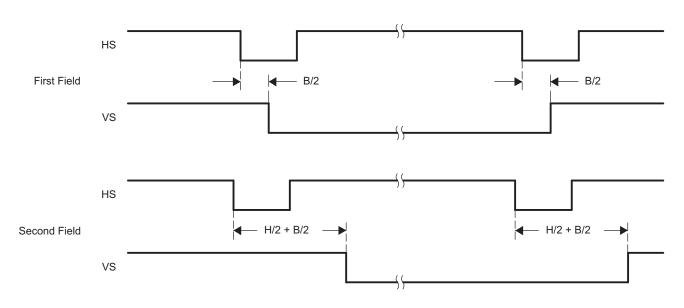
Figure 2-16. Horizontal Synchronization Signals for 10-Bit 4:2:2 Mode

TEXAS INSTRUMENTS

www.ti.com

SLES141H-JULY 2005-REVISED FEBRUARY 2012

NOTE: AVID rising edge occurs 2 clock cycles early


DATAC	CLK = 1	Pixe	el Clocł	ĸ
Mode	А	В	С	D
NTSC 601	53	64	19	136
PAL 601	56	64	22	142

NOTE: 20-bit 4:2:2 timing with 1× pixel clock reference

Figure 2-17. Horizontal Synchronization Signals for 20-Bit 4:2:2 Mode

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Mode	10-Bit (PCLK = 2	Pixel Clock)	20-Bit (PCLK = 1	Pixel Clock)
Iviode	B/2	H/2	B/2	H/2
NTSC 601	64	858	32	429
PAL 601	64	864	32	432

Figure 2-18. VSYNC Position With Respect to HSYNC

2.5.3 Embedded Syncs

Standards with embedded syncs insert the SAV and EAV codes into the data stream on the rising and falling edges of AVID. These codes contain the V and F bits, which also define vertical timing. Table 2-3 gives the format of the SAV and EAV codes.

H equals 1 always indicates EAV. H equals 0 always indicates SAV. The alignment of V and F to the line and field counter varies depending on the standard.

The P bits are protection bits:

P3 = V xor H; P2 = F xor H; P1 = F xor V; P0 = F xor V xor H

	D9 (MSB)	D8	D7	D6	D5	D4	D3	D2	D1	D0
Preamble	1	1	1	1	1	1	1	1	1	1
Preamble	0	0	0	0	0	0	0	0	0	0
Preamble	0	0	0	0	0	0	0	0	0	0
Status word	1	F	V	Н	P3	P2	P1	P0	0	0

TEXAS INSTRUMENTS

2.6 I²C Host Interface

Communication with the TVP5146M2 decoder is via an I^2C host interface. The I^2C standard consists of two signals, the serial input/output data (SDA) line and the serial input clock line (SCL), which carry information between the devices connected to the bus. A third signal (I2CA) is used for slave address selection. Although an I^2C system can be multimastered, the TVP5146M2 decoder functions as a slave device only.

Because SDA and SCL are kept open drain at a logic-high output level or when the bus is not driven, the user must connect SDA and SCL to a positive supply voltage via a pullup resistor on the board. The slave addresses select signal, terminal 37 (I2CA), enables the use of two TVP5146M2 devices tied to the same I²C bus, because it controls the least-significant bit of the I²C device address.

SIGNAL	TYPE	DESCRIPTION
I2CA	I	Slave address selection
SCL	I/O	Input/output clock line
SDA	I/O	Input/output data line

Table 2-4. I²C Host Interface Terminal Description

2.6.1 Reset and ^PC Bus Address Selection

The TVP5146M2 decoder can respond to two possible chip addresses. The address selection is made at reset by an externally supplied level on the I2CA terminal. The TVP5146M2 decoder samples the level of terminal 37 at power up or at the trailing edge of RESETB and configures the I²C bus address bit A0.

Table 2-5. I²C Address Selection

A6	A5	A4	A3	A2	A1	A0 (I2CA)	R/W	HEX
1	0	1	1	1	0	0 (default)	1/0	B9/B8
1	0	1	1	1	0	1 ⁽¹⁾	1/0	BB/BA

(1) If terminal 37 is strapped to DVDD via a 2.2-k Ω resistor, I²C device address A0 is set to 1.

2.6.2 PC Operation

Data transfers occur using the following illustrated formats.

S	10111000	ACK	Subaddress	ACK	Send Data	ACK	Р

Read from I²C control registers

 $S = I^2 C$ bus start condition

 $P = I^2 C$ bus stop condition

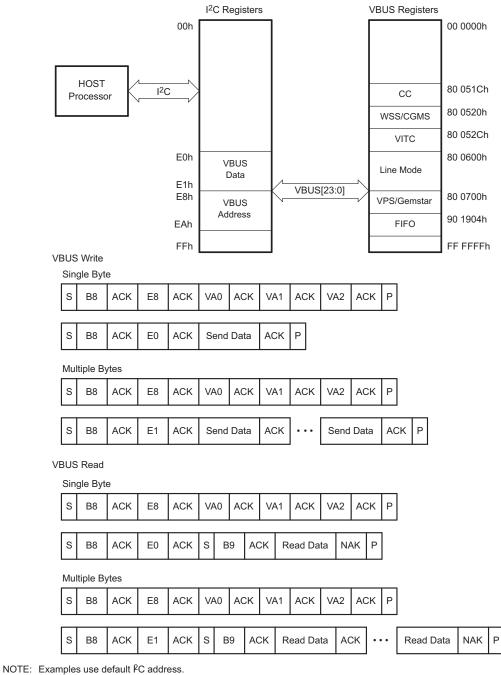
ACK = Acknowledge generated by the slave

NAK = Acknowledge generated by the master, for multiple-byte read master with ACK each

byte except last byte

Subaddress = Subaddress byte

Data = Data byte. If more than one byte of data is transmitted (read and write), the


subaddress pointer is automatically incremented.

I²C bus address = Example shown that I2CA is in default mode [write (B8h), read (B9h)]

2.6.3 VBUS Access

The TVP5146M2 decoder has additional internal registers accessible through an indirect access to an internal 24-bit address wide VBUS. Figure 2-19 shows the VBUS register access.

ACK = Acknowledge generated by the slave NAK = No Acknowledge generated by the master

Figure 2-19. VBUS Access

2.6.4 *PC Timing Requirements*

The TVP5146M2 decoder requires delays in the I²C accesses to accommodate the internal processor timing. In accordance with I²C specifications, the TVP5146M2 decoder holds the I²C clock line (SCL) low to indicate the wait period to the I²C master. If the I²C master is not designed to check for the I²C clock line held-low condition, then the maximum delays must always be inserted where required. These delays are of variable length; maximum delays are indicated in the following diagram:

Normal register

S 10111000 ACK Subaddress ACK Send Data ACKWait 64 µs P	S	; ;	10111000	ACK	Subaddress	ACK	Send Data	ACK	Wait 64 µs	Р
---	---	--------	----------	-----	------------	-----	-----------	-----	------------	---

2.7 VBI Data Processor

The TVP5146M2 VDP slices various data services such as teletext (WST, NABTS), closed caption (CC), wide screen signaling (WSS), program delivery control (PDC), vertical interval time code (VITC), video program system (VPS), copy generation management system (CGMS) data, and electronic program guide (EPG or Gemstar) 1x/2x. Table 2-6 shows the supported VBI system.

These services are acquired by programming the VDP to enable the reception of one or more VBI data standard(s) in the VBI. The VDP can be programmed on a line-per-line basis to enable simultaneous reception of different VBI formats, one per line. The results are stored in a FIFO and/or registers. Because of its high data bandwidth, the teletext results are stored in FIFO only. The TVP5146M2 decoder provides fully decoded V-Chip data to the dedicated registers at subaddresses 800540h to 800543h (see Table 2-117 through Table 2-120).

VBI SYSTEM	STANDARD	LINE NUMBER	NUMBER OF BYTES
Teletext WST A	SECAM	6-23 (Fields 1 and 2)	38
Teletext WST B	PAL	6-22 (Fields 1 and 2)	43
Teletext NABTS C	NTSC	10-21 (Fields 1 and 2)	34
Teletext NABTS D	NTSC-J	10-21 (Fields 1 and 2)	35
Closed Caption	PAL	22 (Fields 1 and 2)	2
Closed Caption	NTSC	21 (Fields 1 and 2)	2
WSS-CGMS	PAL	23 (Fields 1 and 2)	14 bits
WSS-CGMS	NTSC	20 (Fields 1 and 2)	20 bits
VITC	PAL	6-22	9
VITC	NTSC	10-20	9
VPS (PDC)	PAL	16	13
V-Chip (decoded)	NTSC	21 (Field 2)	2
Gemstar 1x	NTSC		2
Gemstar 2x	NTSC		5 with frame byte
User	Any	Programmable	Programmable

Table 2-6. Supported VBI System

2.7.1 VBI FIFO and Ancillary Data in Video Stream

Sliced VBI data can be output as ancillary data in the video stream in ITU-R BT.656 mode. VBI data is output on the Y_[9:2] terminals during the horizontal blanking period. Table 2-7 shows the header format and sequence of the ancillary data inserted into the video stream. This format is also used to store any VBI data into the FIFO. The size of the FIFO is 512 bytes. Therefore, the FIFO can store up to 11 lines of teletext data with the NTSC NABTS standard.

BYTE NO.	D7 (MSB)	D6	D5	D4	D3	D2	D1	D0 (LSB)	DESC	RIPTION		
0	0	0	0	0	0	0	0	0				
1	1	1	1	1	1	1	1	1	Ancillary data preamble			
2	1	1	1	1	1	1	1	1				
3	NEP	EP	0	1	0	DID2	DID1	DID0	Data ID (DID)			
4	NEP	EP	F5	F4	F3	F2	F1	F0	Secondary data ID (SDID)			
5	NEP	EP	N5	N4	N3	N2	N1	N0	Number of 32 bit data (NN)			
6	Video line # [7:0]									ID0 (IDID0)		
7	0 0 0 Data error Match #1 Match #2 Video line # [9:8]								Internal data	ID1 (IDID1)		
8				1. C	Data				Data byte	1st word		
9				2. C	Data				Data byte			
10				3. E	Data				Data byte			
11				4. C	Data				Data byte			
:					:				:			
				m. [Data				Data byte	Nth word		
				CS[7:0]				Check sum			
4N+7	0	0	0	0	0	0	0	0	Fill byte			

Table 2-7.	Ancillarv	Data	Format	and	Sequence
	Anomary	Dutu	i onnat	una	ocquentee

EP: Even parity for D0-D5

NEP: Negated even parity

DID: 91h: Sliced data of VBI lines of first field

53h: Sliced data of line 24 to end of first field

55h: Sliced data of VBI lines of second field

97h: Sliced data of line 24 to end of second field

SDID: This field holds the data format taken from the line mode register bits [2:0] of the corresponding line.

NN: Number of Dwords beginning with byte 8 through 4N+7. This value is the number of Dwords where each Dword is 4 bytes.

- IDID0: Transaction video line number [7:0]
- IDID1: Bit 0/1 = Transaction video line number [9:8]
 - Bit 2 = Match 2 flag
 - Bit 3 = Match 1 flag

Bit 4 = 1 if an error was detected in the EDC block.0 if no error was detected.

CS: Sum of D0-D7 of DID through last data byte

Fill byte: Fill bytes make a multiple of four bytes from byte 0 to last fill byte. For teletext modes, byte 8 is the sync pattern byte. Byte 9 is the first data byte.

TEXAS INSTRUMENTS

2.7.2 VBI Raw Data Output

The TVP5146M2 decoder can output raw A/D video data at twice the sampling rate for external VBI slicing. This is transmitted as an ancillary data block, although somewhat differently from the way the sliced VBI data is transmitted in the FIFO format as described in Section 2.7.1. The samples are transmitted during the active portion of the line. VBI raw data uses ITU-R BT.656 format having only luma data. The chroma samples are replaced by luma samples. The TVP5146M2 decoder inserts a four-byte preamble 000h 3FFh 3FFh 180h before data start. There are no checksum bytes and fill bytes in this mode.

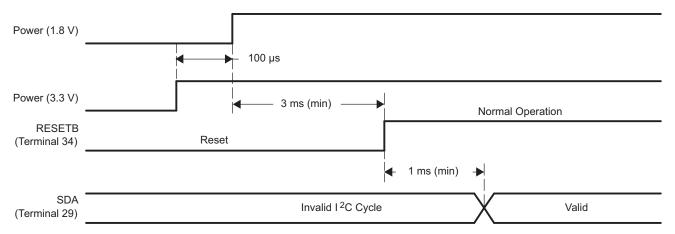
BYTE NO.	D9 (MSB)	D8	D7	D6	D5	D4	D3	D2	D1	D0 (LSB)	DESCRIPTION
0	0	0	0	0	0	0	0	0	0	0	VBI raw data preamble
1	1	1	1	1	1	1	1	1	1	1	
2	1	1	1	1	1	1	1	1	1	1	
3	0	1	1	0	0	0	0	0	0	0	
4	1. Data									2× pixel rate luma data (i.e., NTSC 601: n = 1707)	
5	2. Data										
:	:										
n-1	n-5. Data										
n	n-4. Data										

Table 2-8. VBI Raw Data Output Format

2.8 Reset and Initialization

Reset is initiated at power up or any time terminal 34 (RESETB) is brought low. Table 2-9 describes the status of the TVP5146M2 terminals during and immediately after reset.

Table 2-9. Reset Sequence


SIGNAL NAME	DURING RESET	RESET COMPLETED
Y_[9:0], C_[9:0]/GPIO	Input	High impedance
RESETB, PWDN, SDA, SCL, FSS/GPIO, AVID/GPIO, GLCO/I2CA, HS/CS/GPIO, VS/VBLK/GPIO, FID	Input	Input
INTREQ	Input	Output
DATACLK	Output	High impedance

www.ti.com

SLES141H-JULY 2005-REVISED FEBRUARY 2012

TI recommends the following power-up sequence.

NOTE: All times shown are minimum values. Maximum time between 1.8 V and 3.3 V should be no longer than 1 second.

Figure 2-20. Reset Timing

The following register writes must be made before normal operation of the device.

STEP	I ² C SUBADDRESS	I ² C DATA
1	0x03	0x01
2	0x03	0x00

When using the TVP5146M2I over the industrial (-40° C to 85° C) temperature range, the following register writes are required following device power up and RESETB to write 0x14 to VBUS register 0xA00014. This setup is optional when using the TVP5146M2 over the commercial (0° C to 70° C) temperature range.

STEP	I ² C SUBADDRESS	I ² C DATA
1	0xE8	0x14
2	0xE9	0x00
3	0xEA	0xA0
4	0xE0	0x14

2.9 Adjusting External Syncs

The proper sequence to program the following external syncs is:

- To set NTSC, PAL-M, NTSC 443, PAL60 (525-line modes):
 - Set the video standard to NTSC (register 02h).
 - Set HSYNC, VSYNC, VBLK, and AVID external syncs (registers 16h through 24h).
- To set PAL, PAL-N, SECAM (625-line modes):
 - Set the video standard to PAL (register 02h).
 - Set HSYNC, VSYNC, VBLK, and AVID external syncs (registers 16h through 24h).
- For autoswitch, set the video standard to autoswitch (register 02h).

2.10 Internal Control Registers

The TVP5146M2 decoder is initialized and controlled by a set of internal registers that define the operating parameters of the entire device. Communication between the external controller and the TVP5146M2 is through a standard I²C host port interface, as previously described. Table 2-10 shows the summary of these registers. Detailed programming information for each register is described in the following sections. Additional registers are accessible through an indirect procedure involving access to an internal 24-bit address wide VBUS. Table 2-11 shows the summary of the VBUS registers.

NOTE

Do not write to reserved registers. Reserved bits in any defined register must be written with zeros, unless otherwise noted.

REGISTER NAME	I ² C SUBADDRESS	DEFAULT	R/W
Input select	00h	00h	R/W
AFE gain control	01h	0Fh	R/W
Video standard	02h	00h	R/W
Operation mode	03h	00h	R/W
Autoswitch mask	04h	23h	R/W
Color killer	05h	10h	R/W
Luminance processing control 1	06h	00h	R/W
Luminance processing control 2	07h	00h	R/W
Luminance processing control 3	08h	02h	R/W
Luminance brightness	09h	80h	R/W
Luminance contrast	0Ah	80h	R/W
Chrominance saturation	0Bh	80h	R/W
Chroma hue	0Ch	00h	R/W
Chrominance processing control 1	0Dh	00h	R/W
Chrominance processing control 2	0Eh	0Eh	R/W
Reserved	0Fh		
Component Pr saturation	10h	80h	R/W
Component Y contrast	11h	80h	R/W
Component Pb saturation	12h	80h	R/W
Reserved	13h		
Component Y brightness	14h	80h	R/W
Reserved	15h		
AVID start pixel	16h-17h	055h	R/W
AVID stop pixel	18h-19h	325h	R/W
HSYNC start pixel	1Ah-1Bh	000h	R/W
HSYNC stop pixel	1Ch-1Dh	040h	R/W
VSYNC start line	1Eh-1Fh	004h	R/W
VSYNC stop line	20h-21h	007h	R/W
VBLK start line	22h-23h	001h	R/W
VBLK stop line	24h-25h	015h	R/W
Embedded Sync Offset Control 1	26h	00h	R/W
Embedded Sync Offset Control 2	27h	00h	R/W

Table 2-10. I²C Register Summary⁽¹⁾

 R = Read only, W = Write only, R/W = Read and write Reserved register addresses must not be written to.

www.ti.com

Table 2-10. I²C Register Summary⁽¹⁾ (continued)

REGISTER NAME	I ² C SUBADDRESS	DEFAULT	R/W	
Fast-switch control	28h	CCh	R/W	
Reserved	29h			
Fast-switch SCART delay	2Ah	00h	R/W	
Reserved	2Bh			
SCART delay	2Ch	00h	R/W	
CTI delay	2Dh	00h	R/W	
CTI control	2Eh	00h	R/W	
Brightness and Contrast Range Extender	2Fh	00h	R/W	
Reserved	30h-31h			
Sync control	32h	00h	R/W	
Output formatter 1	33h	40h	R/W	
Output formatter 2	34h	00h	R/W	
Output formatter 3	35h	FFh	R/W	
Output formatter 4	36h	FFh	R/W	
Output formatter 5	37h	FFh	R/W	
Output formatter 6	38h	FFh	R/W	
Clear lost lock detect	39h	00h	R/W	
Status 1	3Ah		R	
Status 2	3Bh		R	
AGC gain status	3Ch-3Dh		R	
Reserved	3Eh			
Video standard status	3Fh		R	
GPIO input 1	40h		R	
GPIO input 2	41h		R	
Reserved	42h-45h		R	
AFE coarse gain for CH1	46h	20h	R/W	
AFE coarse gain for CH2	47h	20h	R/W	
AFE coarse gain for CH3	48h	20h	R/W	
AFE coarse gain for CH4	49h	20h	R/W	
AFE fine gain for Pb_B	4Ah-4Bh	900h	R/W	
AFE fine gain for Y_G_Chroma	4Ch-4Dh	900h	R/W	
AFE fine gain for Pr_R	4Eh-4Fh	900h	R/W	
AFE fine gain for CVBS_Luma	50h-51h	900h	R/W	
Reserved	52h-68h			
F-bit and V-bit control 1	69h	00h	R/W	
Reserved	6Ah-6Bh			
Back-end AGC Control	6Ch	08h	R/W	
Reserved	6Dh-6Eh	•		
AGC decrement speed control	6Fh	04h	R/W	
ROM version	70h	5	R	
RAM Version MSB	70h		R	
Reserved	72h-73h			
AGC white peak processing	721-731 74h	00h	R/W	
F-bit and V-bit control 2	74h	16h	R/W	
VCR trick mode control	76h	8Ah	R/W	
Horizontal shake increment	78h	64h	R/W	
AGC increment speed	77h 78h	0411 05h	R/W	

Copyright © 2005–2012, Texas Instruments Incorporated

REGISTER NAME

INSTRUMENTS

R/W

www.ti.com

EXAS

DEFAULT

	t delay. 70h 1Eh		
AGC increment delay	79h	1Eh	R/W
Reserved	7Ah-7Fh		
Chip ID MSB	80h		R
Chip ID LSB	81h		R
RAM Version LSB	82h		R
CPLL speed control	83h	09h	R/W
Reserved	84h-96h		
Status request	97h	00h	R/W
Reserved	98h-99h		
Vertical line count	9Ah-9Bh		R
Reserved	9Ch-9Dh		
AGC decrement delay	9Eh	00h	R/W
Reserved	9Fh-B0h		
VDP TTX filter 1 mask 1	B1h	00h	R/W
VDP TTX filter 1 mask 2	B2h	00h	R/W
VDP TTX filter 1 mask 3	B3h	00h	R/W
VDP TTX filter 1 mask 4	B4h	00h	R/W
VDP TTX filter 1 mask 5	B5h	00h	R/W
VDP TTX filter 2 mask 1	B6h	00h	R/W
VDP TTX filter 2 mask 2	B7h	00h	R/W
VDP TTX filter 2 mask 3	B8h	00h	R/W
VDP TTX filter 2 mask 4	B9h	00h	R/W
VDP TTX filter 2 mask 5	BAh	00h	R/W
VDP TTX filter control	BBh	00h	R/W
VDP FIFO word count	BCh		R
VDP FIFO interrupt threshold	BDh	80h	R/W
Reserved	BEh		
VDP FIFO reset	BFh	00h	R/W
VDP FIFO output control	C0h	00h	R/W
VDP line number interrupt	C1h	00h	R/W
VDP pixel alignment	C2h-C3h	01Eh	R/W
Reserved	C4h-D5h		
VDP line start	D6h	06h	R/W
VDP line stop	D7h	1Bh	R/W
VDP global line mode	D8h	FFh	R/W
VDP full field enable	D9h	00h	R/W
VDP full field mode	DAh	FFh	R/W
Reserved	DBh-DFh		
VBUS data access with no VBUS address increment	E0h	00h	R/W
VBUS data access with VBUS address increment	E1h	00h	R/W
FIFO read data	E2h		R
Reserved	E3h-E7h		
VBUS address access	E8h-EAh	00 0000h	R/W
Reserved	EBh-EFh		
Interrupt raw status 0	F0h		
Interrupt raw status 1	F1h		
Interrupt status 0	F2h		R/W

Table 2-10. I²C Register Summary⁽¹⁾ (continued)

I²C SUBADDRESS

Copyright © 2005–2012, Texas Instruments Incorporated

www.ti.com

Table 2-10. I ² C Registe	r Summary ⁽¹⁾ (continued)
--------------------------------------	--------------------------------------

REGISTER NAME	I ² C SUBADDRESS	DEFAULT	R/W
Interrupt status 1	F3h		R/W
Interrupt mask 0	F4h	00h	R/W
Interrupt mask 1	F5h	00h	R/W
Interrupt clear 0	F6h	00h	R/W
Interrupt clear 1	F7h	00h	R/W
Reserved	F8h-FFh		

Table 2-11. VBUS Register Summary⁽¹⁾

REGISTER NAME	I ² C SUBADDRESS	DEFAULT	R/W
Reserved	00 0000h-80 051Bh		
VDP closed caption data	80 051Ch-80 051Fh		R
VDP WSS/CGMS data	80 0520h-80 0526h		R
Reserved	80 0527h-80 052Bh		
VDP VITC data	80 052Ch-80 0534h		R
Reserved	80 0535h-80 053Fh		
VDP V-Chip data	80 0540h-80 0543h		R
Reserved	80 0544h-80 05FFh		
VDP general line mode and line address	80 0600h-80 0611h	00h, FFh	R/W
Reserved	80 0612h-80 06FFh		
VDP VPS/Gemstar data	80 070Dh-B0 005Fh		R
Interrupt configuration	B0 0060h	00h	R/W
Reserved	B0 0061h-FF FFFFh		

(1) Writing any value to a reserved register may cause erroneous operation of the TVP5146M2 decoder. It is recommended not to access any data to/from reserved registers.

www.ti.com

STRUMENTS

EXAS

2.11 Register Definitions

Table 2-12. Input Select Register

Subaddress	00h								
Default	00h								
7	6	5	4	3	2	1	0		
	Input select [7:0]								

Ten input terminals can be configured to support composite, S-Video, and component YPbPr or SCART as listed in Table 2-13. Users must follow this table properly for S-Video and component applications, because only the terminal configurations listed in Table 2-13 are supported.

NODE		INPUT SELECT [7:0]									
MODE	INPUT(S) SELECTED	7	6	5	4	3	2	1	0	HEX	
	VI_1_A (default)	0	0	0	0	0	0	0	0	0	
	VI_1_B	0	0	0	0	0	0	1	1	1	
	VI_1_C	0	0	0	0	0	0	1	0	2	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	0	4							
CVBS	VI_2_B	0	0	0	0	0	1	0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1	5	
CVBS	INPUT(S) SELECTED 7 6 5 4 3 2 $V_{1_1}_A$ (default) 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	0	6							
	VI_3_A	0	0	0	0	1	0	0	0	8	
	VI_3_B	0	0	0	0	1	0	0	1	9	
	VI_3_C	0	0	0	0	1	0	1	0	0A	
	VI_4_A	0	0	0	0	1	1	2 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1	0C		
	VI_2_A(Y), VI_1_A(C)	0	1	0	0	0	1	0	0	44	
V	VI_2_B(Y), VI_1_B(C)	0	1	0	0	0	1	0	1	45	
	VI_2_C(Y), VI_1_C(C)		1	0	0	0	1	1	0	46	
	VI_2_A(Y), VI_3_A(C)	0	1	0	1	0	1	0	0	54	
	VI_2_B(Y), VI_3_B(C)	0	1	0	1	0	1	0	1	55	
S-Video	VI_2_C(Y), VI_3_C(C)	0	1	0	1	0	1	1	0	56	
	VI_4_A(Y), VI_1_A(C)	0	1	0	0	1	1	0	0	4C	
	VI_4_A(Y), VI_1_B(C)	0	1	0	0	1	1	0	1	4D	
	VI_4_A(Y), VI_1_C(C)	0	1	0	0	1	1	1	0	4E	
	VI_4_A(Y), VI_3_A(C)	0	1	0	1	1	1	0	0	5C	
	VI_4_A(Y), VI_3_B(C)	0	1	0	1	1	1	0	1	5D	
	VI_4_A(Y), VI_3_C(C)	0	1	0	1	1	1	1	0	5E	
	VI_1_A(B), VI_2_A(G), VI_3_A(R)	1	0	0	0	0	1	0	0	84	
RGB	VI_1_B(B), VI_2_B(G), VI_3_B(R)	1	0	0	0	0	1	0	1	85	
	VI_1_C(B), VI_2_C(G), VI_3_C(R)	1	0	0	0	0	1	0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	86	
	VI_1_A(Pb), VI_2_A(Y), VI_3_A(Pr)	1	0	0	1	0	1	0	0	94	
YPbPr	VI_1_B(Pb), VI_2_B(Y), VI_3_B(Pr)	1	0	0	1	0	1	0	1	95	
	VI_1_C(Pb), VI_2_C(Y), VI_3_C(Pr)	1	0	0	1	0	1	1	0	96	
	VI_1_A(B), VI_2_A(G), VI_3_A(R), VI_4_A(CVBS)	1	1	0	0	1	1	0	0	CC	
	VI_1_B(B), VI_2_B(G), VI_3_B(R), VI_4_A(CVBS)	1	1	0	0	1	1	0	1	CD	
SCART	VI_1_C(B), VI_2_C(G), VI_3_C(R), VI_4_A(CVBS)	1	1	0	0	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	CE	
JUARI	$VI_1_A(Pb), VI_2_A(Y), VI_3_A(Pr), VI_4_A(CVBS)$	1	1	0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1	1	0	0	DC			
	$VI_1_B(Pb), VI_2_B(Y), VI_3_B(Pr), VI_4_A(CVBS)$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	0	1	DD				
1	VI_1_C(Pb), VI_2_C(Y), VI_3_C(Pr), VI_4_A(CVBS)	1	1	0	1	1	1	1	0 0 0 1 0 0 1 0 0 1 0	DE	

Table 2-13. Analog Channel and Video Mode Selection

TEXAS INSTRUMENTS

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-14. AFE Gain Control Register

Subaddress	01h						
Default	0Fh						
7	6	5	4	3	2	1	0
		Reserved		1	1	AGC chroma	AGC luma

Bit 3: 1b must be written to this bit

Bit 2: 1b must be written to this bit

AGC chroma:

Controls automatic gain in the chroma/B/R/PbPr channel:

0 = Manual (if AGC luma is set to manual, AGC chroma is forced to be in manual)

1 = Enabled auto gain, applies a gain value acquired from the sync channel for S-Video and component mode. When AGC luma

is set, this state is valid (default).

AGC luma enable:

101

110

111

Controls automatic gain in the embedded sync channel of CVBS, S-Video, component video

0 = Manual gain, AFE coarse and fine gain frozen to the previous gain value set by AGC when this bit is set to 0.

1 = Enabled auto gain applied to only the embedded sync channel (default)

These settings affect only the analog front-end (AFE). The brightness and contrast controls are not affected by these settings.

Table 2-15. Video Standard Register

Subaddress	02h						
Default	00h						
7	6	5	4	3	2	1	0
Reserved					V	ideo standard [2:0	01

With the autoswitch code running, the user can force the decoder to operate in a particular video standard mode by writing the appropriate value into this register. Changing these bits causes the register settings to be reinitialized. Video standard [2:0]:

Reserved

Reserved

Reserved

CVBS and S-Video Component Video 000 Autoswitch mode (default) Autoswitch mode (default) 001 Interlaced 525 (M, J) NTSC 010 (B, D, G, H, I, N) PAL Interlaced 625 011 (M) PAL Reserved 100 (Combination-N) PAL Reserved

Note: PAL 60 is not included in autoswitch mode.

NTSC 4.43

SECAM

PAL 60

www.ti.com

TRUMENTS

Table 2-16. Operation Mode Control Register

Subaddress	03h						
Default	00h						
7	6	5	4	3	2	1	0
Reserved		H-PLL res	H-PLL response time		Reserved		

H-PLL response time

00 = Adaptive (default)

01 = Reserved

10 = Fast

00 = Normal

When in the Normal mode, the horizontal PLL (H-PLL) response time is set to its slowest setting. This mode improves noise immunity and provides a more stable output line frequency for standard TV signal sources (for example, TV tuners, DVD players, video surveillance cameras, etc.).

When in the Fast mode, the H-PLL response time is set to its fastest setting. This mode enables the H-PLL to respond more quickly to large variations in the horizontal timing (for example, VCR head switching intervals). This mode is recommended for VCRs and also cameras locked to the AC power-line frequency.

When in the Adaptive mode, the H-PLL response time is automatically adjusted based on the measured horizontal phase error. In this mode, the H-PLL response time typically approaches its slowest setting for most standard TV signal sources and approaches its fastest setting for most VCR signal sources.

Power save

0 = Normal operation (default)

1 = Power save mode. Reduces the clock speed of the internal processor and switches off the ADCs. I^2C interface is active and all current operating settings are preserved.

Table 2-17. Autoswitch Mask Register

Subaddress	04h						
Default	23h						
7	6	5	4	3	2	1	0
R	eserved	SECAM	NTSC 4.43	(Nc) PAL	(M) PAL	PAL	(M, J) NTSC

Autoswitch mode mask

Limits the video formats between which autoswitch is possible.

SECAM

0 = Autoswitch does not include SECAM

1 = Autoswitch includes SECAM (default)

```
NTSC 4.43
```

0 = Autoswitch does not include NTSC 4.43 (default)

1 = Autoswitch includes NTSC 4.43

(Nc) PAL

0 = Autoswitch does not include (Nc) PAL (default)

- 1 = Autoswitch includes (Nc) PAL
- (M) PAL

0 = Autoswitch does not include (M) PAL (default)

1 = Autoswitch includes (M) PAL

PAL

0 = Reserved

1 = Autoswitch includes (B, D, G, H, I, N) PAL (default)

```
(M, J) NTSC
```

- 0 = Reserved
- 1 = Autoswitch includes (M, J) NTSC (default)

Note: Bits 1 and 0 must always be 11b.

TEXAS INSTRUMENTS

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-18. Color Killer Register

Subaddress	05h						
Default	10h						
7	6	5	4	3	2	1	0
Reserved	Autor	natic color killer	Color killer threshold [4:0]				

Automatic color killer:

00 = Automatic mode (default)

01 = Reserved

10 = Color killer enabled, the C terminals are forced to a zero color state

11 = Color killer disabled

Color killer threshold [4:0]:

11111 = 31 (maximum)

10000 = 16 (default)

00000 = 0 (minimum)

Table 2-19. Luminance Processing	g Control 1 Register
----------------------------------	----------------------

Subaddress Default	06h 00h						
7	6	5	4	3	2	1	0
Reserved	Pedestal no present	ot Reserved	VBI raw	Luminance signal delay [3:0]			

Pedestal not present:

0 = 7.5 IRE pedestal is present on the analog video input signal (default)

1 = Pedestal is not present on the analog video input signal

VBI raw:

0 = Disable (default)

1 = Enable

During the duration of the vertical blanking as defined by VBLK start and stop registers 22h through 25h, the chroma samples are replaced by luma samples. This feature may be used to support VBI processing performed by an external device during the vertical blanking interval. To use this bit, the output format must be the 10-bit ITU-R BT.656 mode.

Luminance signal delay [3:0]:

Luminance signal delays respect to chroma signal in 1× pixel clock increments.

0111 = Reserved

0110 = 5 pixel clocks delay

0001 = 1 pixel clock delay

0000 = 0 pixel clock delay (default)

1111 = -1 pixel clock delay

1000 = -8 pixel clock delay

SLES141H-JULY 2005-REVISED FEBRUARY 2012

RUMENTS

Table 2-20.	Luminance	Processing	Control 2	Register	

Subaddress	07h						
Default	00h						
7	6	5	4	3	2	1	0
Luma filter select [1:0]		Reserved		Peaking gain (sharpness) [1:0]		Reserved	

Luma filter selected [1:0]:

00 = Luminance adaptive comb enable (default on CVBS)

01 = Luminance adaptive comb disable (trap filter selected)

10 = Luma comb/trap filter bypassed (default on S-Video, component mode, and SECAM)

11 = Reserved

Peaking gain (sharpness) [1:0]:

00 = 0 (default)

01 = 0.5

10 = 1

11 = 2

Table 2-21. Luminance Processing Control 3 Register

Subaddress	08h								
Default	02h								
7	6	5	4	3	2	1	0		
	Reserved Trap filter select [1:0]								

Trap filter select [1:0]:

Selects one of the four trap filters to produce the luminance signal by removing the chrominance signal from the composite video signal. The stopband of the chroma trap filter is centered at the chroma subcarrier frequency with the stopband bandwidth controlled by the two control bits.

Trap filter stop band bandwidth (MHz):

Filter select [1:0]	NTSC ITU-R 601	PAL ITU-R 601
00	1.2129	1.2129
01	0.8701	0.8701
10 (default)	0.7183	0.7383
11	0.5010	0.5010

Table 2-22. Luminance Brightness Register

Subaddress	09h									
Default	80h									
7	6	5	4	3	2	1	0			
	Brightness [7:0]									

Brightness [7:0]:

This register works for CVBS and S-Video luminance. See subaddress 2Fh.

 $0000\ 0000 = 0$ (dark)

1000 0000 = 128 (default)

1111 1111 = 255 (bright)

For composite and S-Video outputs, the output black level relative to the nominal black level (64 out of 1024) as a function of the Brightness [7:0] setting is as follows.

Black Level = nominal_black_level + (M_B + 1) × (Brightness [7:0] - 128)

Where M_B is the brightness multiplier setting in the Brightness and Contrast Range Extender register at I²C subaddress 2Fh.

TEXAS INSTRUMENTS

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-23. Luminance Contrast Register

Subaddress	0Ah									
Default	80h									
7	6	5	4	3	2	1	0			
	Contrast [7:0]									

Contrast [7:0]:

This register works for CVBS and S-Video luminance. See subaddress 2Fh.

0000 0000 = 0 (minimum contrast)

1000 0000 = 128 (default)

1111 1111 = 255 (maximum contrast)

For composite and S-Video outputs, the total luminance gain relative to the nominal luminance gain as a function of the Contrast [7:0] setting is as follows.

Luminance Gain = (nominal_luminance_gain) × [Contrast [7:0] / 64 / (2^M_C) + M_C - 1]

Where M_C is the contrast multiplier setting in the Brightness and Contrast Range Extender register at I²C subaddress 2Fh.

Table 2-24. Chrominance Saturation Register

Subaddress	0Bh									
Default	80h									
7	6	5	4	3	2	1	0			
	Saturation [7:0]									

Saturation [7:0]:

This register works for CVBS and S-Video chrominance.

 $0000\ 0000 = 0$ (no color)

1000 0000 = 128 (default)

1111 1111 = 255 (maximum)

For composite and S-Video outputs, the total chrominance gain relative to the nominal chrominance gain as a function of the Saturation [7:0] setting is as follows.

Chrominance Gain = (nominal_chrominance_gain) × (Saturation [7:0] / 128)

Table 2-25. Chroma Hue Register

Subaddress	0Ch								
Default	00h								
7	6	5	4	3	2	1	0		
Hue [7:0]									

Hue [7:0]:

Does not apply to a component or SECAM video. This register works for CVBS and S-Video chrominance.

0111 1111 = +180 degrees

0000 0000 = 0 degrees (default)

 $1000\ 0000 = -180\ degrees$

SLES141H – JULY 2005 – REVISED FEBRUARY 2012

STRUMENTS

EXAS

www.ti.com

Table 2-26. Chrominance Processing Control 1 Register

Subaddress Default	0Dh 00h						
7	6	5	4	3	2	1	0
	Reserved		Color PLL reset	Chroma adaptive comb enable	Reserved	Automatic color	gain control [1:0]

Color PLL reset:

0 = Color subcarrier PLL not reset (default)

1 = Color subcarrier PLL reset

Chrominance adaptive comb enable:

This bit is effective on composite video only.

0 = Enable (default)

1 = Disable

Automatic color gain control (ACGC) [1:0]:

00 = ACGC enabled (default)

01 = Reserved

10 = ACGC disabled, ACGC set to the nominal value

11 = ACGC frozen to the previously set value

Table 2-27. Chrominance Processing Control 2 Register

Subaddress	0Eh			•		-	
Default	0Eh						
			1				
7	6	5	4	3	2	1	0
	R	leserved		PAL compensation	WCF	Chrominance	filter select [1:0]
PAL compens	ation:						
0 = Disab	led						
1 = Enabl	led (default)						
WCF:							
Wideband	d chroma LPF filte	ŧ٢					
0 = Disab	led						
1 = Enabl	led (default)						
Chrominance	filter select [1:0]:						
00 = Disa	bled						
01 = Notc	ch 1						
10 = Noto	h 2 (default)						
11 = Noto	ch 3						
See Figure 2-	6 and Figure 2-7	for characteristics.					
Subaddress	10h	Table 2	2-28. Compoı	nent Pr Saturati	ion Registe	er	

Subaddress	10h									
Default	80h									
7	6	5	4	3	2	1	0			
Pr saturation [7:0]										

Pr saturation [7:0]:

This register works only with YPbPr component video. For RGB video, use the AFE gain registers.

0000 0000 = minimum

1000 0000 = default

1111 1111 = maximum

For component video, the total Pr gain relative to the nominal Pr gain as a function of the Pr saturation [7:0] setting is as follows: Pr Gain = (nominal_chrominance_gain) × (Pr saturation [7:0] / 128)

TEXAS INSTRUMENTS

www.ti.com

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-29. Component Y Contrast Register

Subaddress	11h									
Default	80h									
7	6	5	4	3	2	1	0			
	Y contrast [7:0]									

Y contrast [7:0]:

This register works only with YPbPr component video. For RGB video, use the AFE gain registers.

0000 0000 = minimum

1000 0000 = default

1111 1111 = maximum

For component video outputs, the total luminance gain relative to the nominal luminance gain as a function of the Y contrast [7:0] is as follows:

Y Gain = (nominal_luminance_gain) × (Y contrast [7:0] / 128)

Table 2-30. Component Pb Saturation Register

Subaddress	12h									
Default	80h									
7	6	5	4	3	2	1	0			
	Pb saturation [7:0]									

Pb saturation:

This register works only with YPbPr component video. For RGB video, use the AFE gain registers.

0000 0000 = minimum

1000 0000 = default

1111 1111 = maximum

For component video, the total Pb gain relative to the nominal Pb gain as a function of the Pb saturation [7:0] setting is as follows: Pb Gain = (nominal_chrominance_gain) × (Pb saturation [7:0] / 128)

Table 2-31. Component Y Brightness Register

Subaddress	14h									
Default	80h									
7	6	5	4	3	2	1	0			
	Y brightness [7:0]									

Y brightness:

This register works only with YPbPr component video. For RGB video, use the AFE gain registers.

0000 0000 = minimum

1000 0000 = default

1111 1111 = maximum

For component video, the output black level relative to the nominal black level (64 out of 1024) as a function of Y brightness [7:0] is as follows:

Black Level = nominal_black_level + (Y brightness [7:0] - 128)

www.ti.com

STRUMENTS

Table 2-32. AVID Start Pixel Register

Subaddress	16h-17h								
Default	55h								
Subaddress	7	6	5	4	3	2	1	0	
16h			AVID start [7:0]						
17h		Reserved	Reserved AVID active Reserved AVID start [9:8]						

AVID active:

0 = AVID out active in VBLK (default)

1 = AVID out inactive in VBLK

AVID start [9:0]:

AVID start pixel number, this is an absolute pixel location from HSYNC start pixel 0.

NTSC 601 default: is 85 (55h)

PAL 601 default: is 95 (5Fh)

The TVP5146M2 decoder updates the AVID start only when the AVID start MSB byte is written to. If the user changes these registers, the TVP5146M2 decoder retains values in different modes until this decoder resets. The AVID start pixel register also controls the position of the SAV code.

Table 2-33. AVID Stop Pixel Register

Subaddress	18h-19h								
Default	325h								
Subaddress	7	6	5	4	3	2	1	0	
18h				AVID st	op [7:0]				
19h		Reserved AVID stop [9:8]							

AVID stop [9:0]:

AVID stop pixel number. The number of pixels of active video must be an even number. This is an absolute pixel location from HSYNC start pixel 0.

NTSC 601 default: 805 (325h)

PAL 601 default: 815 (32Fh)

The TVP5146M2 decoder updates the AVID stop only when the AVID stop MSB byte is written to. If the user changes these registers, the TVP5146M2 decoder retains values in different modes until this decoder resets. The AVID start pixel register also controls the position of the EAV code.

Table 2-34. HSYNC Start Pixel Register

Subaddress Default	1Ah-1Bh 000h								
Subaddress	7	6	5	4	3	2	1	0	
1Ah			HSYNC start [7:0]						
1Bh		Reserved HSYNC start [9:8]							

HSYNC start pixel [9:0]:

This is an absolute pixel location from HSYNC start pixel 0.

The TVP5146M2 decoder updates the HSYNC start only when the HSYNC start MSB byte is written to. If the user changes these registers, the TVP5146M2 decoder retains values in different modes until this decoder resets.

www.ti.com

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-35. HSYNC Stop Pixel Register

Subaddress	1Ch-1Dh								
Default	040h								
Subaddress	7	6	5	4	3	2	1	0	
1Ch				HSYNC	stop [7:0]				
1Dh		Reserved HSYNC stop [9:8]							

HSYNC stop [9:0]:

This is an absolute pixel location from HSYNC start pixel 0.

The TVP5146M2 decoder updates the HSYNC stop only when the HSYNC Stop MSB byte is written to. If the user changes these registers, the TVP5146M2 decoder retains values in different modes until this decoder resets.

Table 2-36. VSYNC Start Line Register

Subaddress	1Eh-1Fh							
Default	004h							
Subaddress	7	6	5	4	3	2	1	0
1Eh		VSYNC start [7:0]						
1Fh	Reserved VSYNC start [9:8]							

VSYNC start [9:0]:

This is an absolute line number.

The TVP5146M2 decoder updates the VSYNC start only when the VSYNC start MSB byte is written to. If the user changes these registers, the TVP5146M2 decoder retains values in different modes until this decoder resets.

NTSC default: 004h

PAL default: 001h

Table 2-37. VSYNC Stop Line Register

Subaddress	20h-21h							
Default	007h							
Subaddress	7	6	5	4	3	2	1	0
20h		VSYNC stop [7:0]						
21h		Reserved VSYNC stop [9:8]						

VSYNC stop [9:0]:

This is an absolute line number.

The TVP5146M2 decoder updates the VSYNC stop only when the VSYNC stop MSB byte is written to. If the user changes these registers, the TVP5146M2 decoder retains values in different modes until this decoder resets.

NTSC default: 007h

PAL default: 004h

Table 2-38. VBLK Start Line Register

Subaddress	22h-23h							
Default	001h							
Subaddress	7	6	5	4	3	2	1	0
22h				VBLK st	art [7:0]			
23h		Reserved VBLK start [9:8]						

VBLK start [9:0]:

This is an absolute line number.

The TVP5146M2 decoder updates the VBLK start line only when the VBLK start MSB byte is written to. If the user changes these registers, the TVP5146M2 decoder retains values in different modes until this decoder resets.

NTSC default: 1 (001h)

PAL default: 623 (26Fh)

www.ti.com

TRUMENTS

AS

Table 2-39. VBLK Stop Line Register

Subaddress	24h-25h							
Default	015h							
Subaddress	7	6	5	4	3	2	1	0
24h				VBLK s	top [7:0]			
25h		Reserved VBLK stop [9:8]						

VBLK stop [9:0]:

This is an absolute line number.

The TVP5146M2 decoder updates the VBLK stop only when the VBLK stop MSB byte is written to. If the user changes these registers, the TVP5146M2 decoder retains values in different modes until this decoder resets.

NTSC default: 21 (015h)

PAL default: 23 (017h)

Table 2-40. Embedded Sync Offset Control 1 Register

Subaddress	26h									
Default	00h									
7	6	5	4	3	2	1	0			
	Offset [7:0]									

This register allows the line position of the embedded F bit and V bit signals to be offset from the 656 standard positions. This register is only applicable to input video signals with standard number of lines.

0111 1111 = 127 lines : 0000 0001 = 1 line 0000 0000 = 0 line 1111 1111 = -1 line : 1000 0000 = -128 lines

Table 2-41. Embedded Sync Offset Control 2 Register

Subaddress	27h								
Default	00h								
7	6	5	4	3	2	1	0		
	Offset [7:0]								

This register allows the line relationship between the embedded F bit and V bit signals to be offset from the 656 standard positions and moves F relative to V. This register is only applicable to input video signals with standard number of lines.

0111 1111 = 127 lines : 0000 0001 = 1 line 0000 0000 = 0 line 1111 1111 = -1 line : 1000 0000 = -128 lines

TEXAS INSTRUMENTS

www.ti.com

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-42. Fast-Switch Control Register

Subaddress	28h						
Default	CCh						
7	6	5	4	3	2	1	0
	Mode [2:0]		Rese	erved	FSS edge	Reserved	Polarity FSS
Mode [2:0]:							
000 = CVB	$S \leftrightarrow SCART$						
001 = Rese	erved						
010 = Rese	erved						
011 = Rese	erved						
100 = Rese	erved						
101 = Rese	erved						
110 = Com	posite (default)						
111 = Com	ponent only						
FSS edge:							
FSS is sam	pled at the rising or	falling edge of the	sampling clock				
0 = Rising	edge						
1 = Falling	edge (default)						
Polarity FSS:							
0 = 0: YCb	Cr/RGB, 1: CVBS (4	A) (default)					

1 = 0: CVBS (4A), 1: YCbCr/RGB

Table 2-43. Fast-Switch SCART Delay Register

Subaddress Default	2Ah 00h						
Boladit	0011	1	i.	1			•
7	6	5	4	3	2	1	0
	Reserved				FSS delay [4:0]		

FSS delay [4:0]:

Adjusts the delay between the FSS and component RGB/YPbPr

0 1111 = 15 pixel delay

0 0001 = 1 pixel delay

 $0\ 0000 = 0\ delay\ (default)$

 $1 \, 1111 = -1$ pixel delay

 $1\ 0000 = -26$ pixel delay

Table 2-44. SCART Delay Register

Subaddress	2Ch						
Default	00h						
7	6	5	4	3	2	1	0
	Reserved SCART delay [6:0]						

SCART delay [4:0]:

Adjusts delay between the CVBS and component (RGB) video

0 1111 = 15 pixel delay

 $0\ 0001 = 1$ pixel delay

 $0\ 0000 = 0\ delay\ (default)$

 $1 \ 1111 = -1$ pixel delay

 $1\ 0000 = -16$ pixel delay

SLES141H-JULY 2005-REVISED FEBRUARY 2012

www.ti.com

RUMENTS

Table 2-45. CTI Delay Register

Subaddress	2Dh						
Default	00h						
7	6	5	4	3	2	1	0
		Reserved				CTI delay [2:0]	

CTI delay [2:0]:

Sets the delay of the Y channel with respect to Cb/Cr in the CTI block

011 = 3-pixel delay

001 = 1-pixel delay

000 = 0 delay (default)

111 = -1-pixel delay

100 = -4-pixel delay

Table 2-46. CTI Control Register

Subaddress	2Eh						
Default	00h						
7	6	5	4	3	2	1	0
	CTI	corina [3:0]			CTI da	in [3:0]	

CTI coring [3:0]:

4-bit CTI coring limit control values, unsigned, linear control range from 0 to ±60, step size = 4

1111 = ±60 :

 $0001 = \pm 4$

0000 = 0 (default)

CTI gain [3:0]:

4-bit CTI gain control values, unsigned, linear control range from 0 to 15/16, step size = 1/16

1111 = 15/16

:

0001 = 1/16

0000 = 0 (default)

Table 2-47. Brightness and Contrast Range Extender Register

Subaddress	2Fh						
Default	00h						
7	6	5	4	3	2	1	0
	Reserved		Contrast		Brightness n	nultiplier [3:0]	

Contrast multiplier (M_C):

Increases the contrast control range for composite and S-Video modes.

0 = 2x contrast control range (default), Gain = n/64 - 1 where n is the contrast control and $64 \le n \le 255$

multiplier

1 = Normal contrast control range, Gain = n/128 where n is the contrast control and $0 \le n \le 255$

Brightness multiplier [3:0] (M_B):

Increases the brightness control range for composite and S-Video modes from 1x to 16x.

0h = 1x

1h = 2x

3h = 4x

7h = 8x

Fh = 16x

Note: In general, the brightness multiplier should be set to 0h for 10-bit outputs and 3h for 8-bit outputs

www.ti.com

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-48. Sync Control Register

Subaddress	32h						
Default	00h						
7	6	5	4	3	2	1	0
	Reserved		Polarity FID	Polarity VS	Polarity HS	VS/VBLK	HS/CS

Polarity FID:

Determines polarity of FID terminal

0 = First field high, second field low (default)

1 = First field low, second field high

Polarity VS:

Determines polarity of VS terminal

0 = Active low (default)

1 = Active high

Polarity HS:

Determines polarity of HS terminal

0 = Active low (default)

1 = Active high

VS/VBLK:

0 = VS terminal outputs vertical sync (default)

1 = VS terminal outputs vertical blank

HS/CS:

0 = HS terminal outputs horizontal sync (default)

1 = HS terminal outputs composite sync

Table 2-49. Output Formatter Control 1 Register

Subaddress	33h							
Default	40h							
7	6		5	4	3	2	1	0
Reserved	YCbCr cod	e range	CbCr code	Reserved		(Output format [2:0	0]

YCbCr output code range:

0 = ITU-R BT.601 coding range (Y ranges from 64 to 940, Cb and Cr range from 64 to 960)

1 = Extended coding range (Y, Cb, and Cr range from 4 to 1016) (default)

CbCr code format:

0 = Offset binary code (2s complement + 512) (default)

1 = Straight binary code (2s complement)

Output format [2:0]:

000 = 10-bit 4:2:2 (pixel x 2 rate) with embedded syncs (ITU-R BT.656) (default)

001 = 20-bit 4:2:2 (pixel rate) with separate syncs

010 = Reserved

011 = 10-bit 4:2:2 with separate syncs

100-111 = Reserved

Note: 10-bit mode is also used for the raw VBI output mode when bit 4 (VBI raw) in the luminance processing control 1 register at subaddress 06h is set (see Table 2-19).

www.ti.com

STRUMENTS

EXAS

Table 2-50. Output Formatter Control 2 Register

Subaddress	34h						
Default	00h						
7	6	5	4	3	2	1	0
Reserved			Y [9:0] enable	Rese	erved	CLK polarity	Clock enable

Y [9:0] enable:

Y_[9:0] and C_[9:0] output enable

 $0 = Y_{9:0}$ and $C_{9:0}$ high-impedance (default)

1 = Y_[9:0] and C_[9:0] active

CLK polarity:

0 = Data clocked out on the falling edge of DATACLK (default)

1 = Data clocked out on the rising edge of DATACLK

Clock enable:

0 = DATACLK outputs are high-impedance (default)

1 = DATACLK outputs are enabled

Table 2-51. Output Formatter Control 3 Register

Subaddress	35h						
Default	FFh						
7	6	5	4	3	2	1	0
F	SS [1:0]	AVID	[1:0]	GLCC	D [1:0]	FID	[1:0]
FCC [4.0]							

FSS [1:0]:

FSS terminal function select

00 = FSS is logic 0 output

01 = FSS is logic 1 output

10 = Reserved

11 = FSS is logic input (default)

AVID [1:0]:

AVID terminal function select

00 = AVID is logic 0 output

01 = AVID is logic 1 output

10 = AVID is active video indicator output

11 = AVID is logic input (default)

GLCO [1:0]:

GLCO terminal function select

00 = GLCO is logic 0 output

01 = GLCO is logic 1 output

10 = GLCO is genlock output

11 = GLCO is logic input (default)

FID [1:0]:

FID terminal function select

00 = FID is logic 0 output

01 = FID is logic 1 output

10 = FID is FID output

11 = FID is logic input (default)

Table 2-52.	Output	Formatter	Control 4	Register
-------------	--------	-----------	------------------	----------

Subaddress	36h							
Default	FFh							
7	6	5	4	3	2	1	0	
VS/\	/BLK [1:0]	HS/C	S [1:0]	C_1	[1:0]	C_0 [1:0]		
VS/VBLK [1:0]]:							
VS termin	al function select							
00 = VS is	s logic 0 output							
01 = VS is	s logic 1 output							
10 = VS/V (see Table		nc or vertical blank o	output correspon	ding to bit 1 (VS/VB	BLK) in the sync co	ontrol register at s	ubaddress 32h	
11 = VS is	s logic input (defa	ult)						
HS/CS [1:0]:								
HS termin	al function select							
00 = HS is	s logic 0 output							
01 = HS is	s logic 1 output							
10 = HS/C (see Table		nc or composite syn	c output corresp	onding to bit 0 (HS/	CS) in the sync co	ontrol register at s	ubaddress 32h	
11 = HS is	s logic input (defa	ult)						
C_1 [1:0]:								
C_1 termi	nal function selec	t						
$00 = C_1$	is logic 0 output							
01 = C_1	is logic 1 output							
10 = Rese	erved							
11 = C_1	is logic input (def	ault)						
C_0 [1:0]:								
C_0 termi	nal function selec	t						
$00 = C_0$	is logic 0 output							
	is logic 1 output							
10 = Rese	erved							
11 = C_0	is logic input (def	ault)						
Note: C_x fun	ctions are availab	ble only in the 10-bit	output mode.					

SLES141H-JULY 2005-REVISED FEBRUARY 2012

NSTRUMENTS www.ti.com

Texas

			-55. Output 1		i oi o itegiste	1	
Subaddress	37h						
Default	FFh						
7	6	5	4	3	2	1	0
С	_5 [1:0]	C_4	4 [1:0]	C_3	[1:0]	C_2	[1:0]
C_5 [1:0]:							
C_5 term	inal function select						
$00 = C_5$	is logic 0 output						
01 = C_5	is logic 1 output						
10 = Res	erved						
11 = C_5	is logic input (defaul	t)					
C_4 [1:0]:							
C_4 term	inal function select						
$00 = C_4$	is logic 0 output						
01 = C_4	is logic 1 output						
10 = Res	erved						
11 = C_4	is logic input (defaul	t)					
C_3 [1:0]:							
C_3 term	inal function select						
00 = C_3	is logic 0 output						
01 = C_3	is logic 1 output						
10 = Res	erved						
11 = C_3	is logic input (defaul	t)					
C_2 [1:0]:							
C_2 term	inal function select						
00 = C_2	is logic 0 output						
01 = C_2	is logic 1 output						
10 = Rese	erved						
11 = C_2	is logic input (defaul	t)					
Note: C_x fur	nctions are available	only in the 10-bit	output mode.				

Table 2-53. Output Formatter Control 5 Register

TEXAS INSTRUMENTS

www.ti.com

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Subaddress	38h						
Default	FFh						
7	6	5	4	3	2	1	0
C	_9 [1:0]	C_	8 [1:0]	C_7	[1:0]	C_6	[1:0]
C_9 [1:0]:							
C_9 termi	inal function select						
00 = C_9	is logic 0 output						
01 = C_9	is logic 1 output						
10 = Rese	erved						
11 = C_9	is logic input (default)						
C_8 [1:0]:							
C_8 termi	inal function select						
00 = C_8	is logic 0 output						
01 = C_8	is logic 1 output						
10 = Rese	erved						
11 = C_8	is logic input (default)						
C_7 [1:0]:							
	inal function select						
	is logic 0 output						
	is logic 1 output						
10 = Rese							
_	is logic input (default)						
C_6 [1:0]:							
	inal function select						
	is logic 0 output						
	is logic 1 output						
10 = Rese							
11 = C_6	is logic input (default)						

Table 2-54. Output Formatter Control 6 Register

Table 2-55. Clear Lost Lock Detect Register

Subaddress	39h						
Default	00h						
7	6	5	4	3	2	1	0
			Reserved				Clear lost lock detect

Clear lost lock detect:

Clear bit 4 (lost lock detect) in the status 1 register at subaddress 3Ah (see Table 2-56)

0 = No effect (default)

1 = Clears bit 4 in the status 1 register

TEXAS INSTRUMENTS

www.ti.com

Table 2-56. Status 1 Register

	3Ah Read only						
7	6	5	4	3	2	1	0
Peak white detect status	Line-alternating status	Field rate status	Lost lock detect	Color subcarrier lock status	Vertical sync lock status	Horizontal sync lock status	TV/VCR status

Peak white detect status:

0 = Peak white is not detected

1 = Peak white is detected

Line-alternating status:

0 = Non line-alternating

1 = Line-alternating

Field rate status:

0 = 60 Hz

1 = 50 Hz

Lost lock detect:

0 = No lost lock since this bit was last cleared

1 = Lost lock since this bit was last cleared

Color subcarrier lock status:

0 = Color subcarrier is not locked

1 = Color subcarrier is locked

Vertical sync lock status:

0 = Vertical sync is not locked

1 = Vertical sync is locked

Horizontal sync lock status:

0 = Horizontal sync is not locked

1 = Horizontal sync is locked

TV/VCR status:

0 = TV

1 = VCR

Table 2-57. Status 2 Register

Subaddress	3Bh								
	Read only								
7	6	5	4	3	2	1	0		
Reserved	Weak signal detection	PAL switch polarity	Field sequence status	Color killed	Macrovision detection [2:0]				
Weak signal d	etection:								
0 = No we	ak signal								
1 = Weak	signal mode								
PAL switch po	larity of first line of o	dd field:							
0 = PAL s	witch is 0b								
1 = PAL s	witch is 1b								
Field sequenc	e status:								
0 = Even	ïeld								
1 = Odd fi	eld								
Color killed:									
0 = Color	killer not active								
1 = Color	killer activated								
Macrovision d	etection [2:0]:								
000 = No	copy protection								
001 = AG	C pulses/pseudo syr	ncs present (Type	1)						
010 = 2-lir	ne colorstripe only pr	resent							
011 = AG	C pulses/pseudo syr	ncs and 2-line colo	orstripe present (T	ype 2)					
100 = Res	erved								
101 = Res	erved								
110 = 4-lir	ne colorstripe only pr	resent							
111 = AG	C pulses/pseudo syr	ncs and 4-line colo	orstripe present (T	ype 3)					

Table 2-58. AGC Gain Status Register

Subaddress	3Ch-3Dh							
	Read only							
Subaddress	7	6	5	4	3	2	1	0
3Ch				Fine Gair	n [7:0]			
3Dh		Coarse Ga	in [3:0]			Fine Ga	ain [11:8]	
	-							

Fine gain [11:0]:

This register provides the fine gain value of sync channel.

1111 1111 1111 = 1.9995

1000 0000 0000 = 1

0010 0000 0000 = 0.5

Coarse gain [3:0]:

This register provides the coarse gain value of sync channel.

1111 = 2

0101 = 1

0000 = 0.5

The AGC gain status register is updated automatically by the TVP5146M2 decoder when AGC is on. In manual gain control mode, these register values are not updated by the TVP5146M2 decoder.

www.ti.com

RUMENTS

AS

Table 2-59. Video Standard Status Register

Subaddress	3Fh						
	Read only						
7	6	5	4	3	2	1	0
Autoswitch		Rese	erved		V	ideo standard [2:0	וכ

Autoswitch mode

0 = Stand-alone (forced video standard) mode

1 = Autoswitch mode enabled

Video standard [2:0]:

	CVBS and S-Video	Component Video
000	Reserved	Reserved
001	(M, J) NTSC Component 525	
010	(B, D, G, H, I, N) PAL	Component 625
011	(M) PAL	Reserved
100	(Combination-N) PAL	Reserved
101	NTSC 4.43	Reserved
110	SECAM	Reserved
111	PAL 60	Reserved

This register contains information about the detected video standard that the device is currently operating. When autoswitch code is running, this register must be tested to determine which video standard has been detected.

Table 2-60. GPIO Input 1 Register

Subaddress	40h						
	Read only						
7	6	5	4	3	2	1	0
C_7	C_6	C_5	C_4	C_3	C_2	C_1	C_0

C_x input status:

0 = Input is low

1 = Input is high

These status bits are valid only when terminals are used as inputs and are updated at every line.

www.ti.com

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-61. GPIO Input 2 Register	
-----------------------------------	--

Subaddress	41h						
	Read only						
7	6	5	4	3	2	1	0
FSS	AVID	GLCO	VS	HS	FID	C_9	C_8
FSS input tern	ninal status:						
0 = Input is							
1 = Input is							
AVID input ter	-						
0 = Input is							
1 = Input is							
	erminal status:						
0 = Input is							
1 = Input is	a high						
VS input termi	inal status:						
0 = Input is	a low						
1 = Input is	a high						
HS input statu	IS:						
0 = Input is	a low						
1 = Input is	a high						
FID input statu	us:						
0 = Input is	a low						
1 = Input is	a high						
C_x input state	us:						
0 = Input is	a low						
1 = Input is	a high						
Those status I	hits are valid only w	hen terminals are u	sed as inputs and	d are updated at ev	verv line		

Table 2-62. Vertical Line Count Register

Subaddress	42h-43h							
	Read only							
Subaddress	7	6	5	4	3	2	1	0
3Ch		V_CNT[7:0]						
3Dh			Reserv	ved			V_CN	IT[9:8]

V_CNT[9:0]:

Represents the detected total number of lines from the previous frame

1100 = 1.71011 = 1.6 1010 = 1.5 1001 = 1.4 1000 = 1.30111 = 1.2 0110 = 1.1 0101 = 1 0100 = 0.90011 = 0.8 0010 = 0.7(default)0001 = 0.60000 = 0.5

SLES141H-JULY 2005-REVISED FEBRUARY 2012

www.ti.com

STRUMENTS

EXAS

		Table	2-63. AFE Coa	rse Gain for (CH 1 Register		
Subaddress	46h						
Default	20h						
7	6	5	4	3	2	1	0
	CGAIN 1 [3:0] Reserved						
CGAIN 1 [3:0]	:						
Coarse G	ain = 0.5 + (CG	AIN 1)/10 where 0 ≤ 0	CGAIN 1 ≤ 15				
This regis	ter works only i	n manual gain control	I mode. When AGC	is active, writing t	to any value is ign	ored.	
1111 = 2							
1110 = 1.	9						
1101 = 1.	8						

..... 0 00 . • •

Table 2-64.	AFE Coars	e Gain for	CH 2	Register
				Negister

Subaddress	47h						
Default	20h						
7	6	5	4	3	2	1	0
	CO	AIN 2 [3:0]			Rese	rved	

CGAIN 2 [3:0]:

Coarse Gain = 0.5 + (CGAIN 2)/10 where $0 \le CGAIN 2 \le 15$.

This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.

11	11	=	2
11	10	=	1.9

1101 = 1.8 1100 = 1.71011 = 1.6 1010 = 1.5 1001 = 1.4 1000 = 1.3 0111 = 1.20110 = 1.1 0101 = 1 0100 = 0.9 0011 = 0.8 0010 = 0.7(default)

0001 = 0.60000 = 0.5

Subaddress	48h						
Default	20h						
7	6	5	4	3	2	1	0
	CGAIN 3 [3:0]				Rese	erved	

CGAIN 3 [3:0]:

Coarse Gain = 0.5 + (CGAIN 3)/10 where $0 \le CGAIN 3 \le 15$.

This register works only in manual gain control mode. When AGC is active, writing to any value is ignored. 1111 = 2

1111 = 2
1110 = 1.9
1101 = 1.8
1100 = 1.7
1011 = 1.6
1010 = 1.5
1001 = 1.4
1000 = 1.3
0111 = 1.2
0110 = 1.1
0101 = 1
0100 = 0.9
0011 = 0.8
0010 = 0.7(default)
0001 = 0.6
0000 = 0.5

Subaddress	49h						
Default	20h						
7	6	5	4	3	2	1	0
	CO	AIN 4 [3:0]		Reserved			

CGAIN 4 [3:0]:

Coarse Gain = 0.5 + (CGAIN 4)/10 where $0 \le CGAIN 4 \le 15$.

This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.

1111 = 2

1110 = 1.91101 = 1.81100 = 1.71011 = 1.61010 = 1.51001 = 1.41000 = 1.30111 = 1.20110 = 1.10101 = 10100 = 0.90011 = 0.8

0010 = 0.7(default)

0001 = 0.6

0000 = 0.5

SLES141H-JULY 2005-REVISED FEBRUARY 2012

www.ti.com

RUMENTS

Table 2-67. AFE Fine Gain for Pb_B Register

Subaddress	4Ah-4Bh									
Default	900h									
Subaddress	7	6	5	4	3	2	1	0		
4Ah		FGAIN 1 [7:0]								
4Bh		Rese	erved		FGAIN 1 [11:8]					

FGAIN 1 [11:0]:

This fine gain applies to component B/Pb.

Fine Gain = $(1/2048) \times \text{FGAIN 1}$, where $0 \leq \text{FGAIN 1} \leq 4095$

This register is only updated when the MSB (register 4Bh) is written to.

This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.

1111 1111 1111 = 1.9995

1100 0000 0000 = 1.5

1001 0000 0000 = 1.125 (default)

1000 0000 0000 = 1

0100 0000 0000 = 0.5

0011 1111 1111 to 0000 0000 0000 = Reserved

Table 2-68. AFE Fine Gain for Y_G_Chroma Register

Subaddress	4Ch-4Dh									
Default	900h									
Subaddress	7	6	5	4	3	2	1	0		
4Ch		FGAIN 2 [7:0]								
4Dh		Rese	erved		FGAIN 2 [11:8]					

FGAIN 2 [11:0]:

This gain applies to component Y/G channel or S-video chroma.

Fine_Gain = (1/2048) × FGAIN 2, where $0 \le$ FGAIN $2 \le 4095$

This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.

1111 1111 1111 = 1.9995

1100 0000 0000 = 1.5

1001 0000 0000 = 1.125 (default)

1000 0000 0000 = 1

0100 0000 0000 = 0.5

0011 1111 1111 to 0000 0000 0000 = Reserved

Table 2-69. AFE Fine Gain for Pr_R Register

Subaddress Default	4Eh-4Fh 900h								
Subaddress	7	6	5	4	3	2	1	0	
4Eh		FGAIN 3 [7:0]							
4Fh		Rese	erved		FGAIN 3 [11:8]				

FGAIN 3 [11:0]:

This fine gain applies to component Pb/B.

Fine_Gain = (1/2048) × FGAIN 3, where $0 \le$ FGAIN $3 \le 4095$

This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.

1111 1111 1111 = 1.9995

1100 0000 0000 = 1.5

1001 0000 0000 = 1.125 (default)

1000 0000 0000 = 1

0100 0000 0000 = 0.5

0011 1111 1111 to 0000 0000 0000 = Reserved

www.ti.com

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Subaddress	50h-51h									
Default	900h									
Subaddress	7	6	5	4	3	2	1	0		
50h			FGAIN 4 [7:0]							
51h		Rese	erved		FGAIN 4 [11:8]					

FGAIN 4 [11:0]:

This fine gain applies to CVBS or S-video luma.

Fine_Gain = (1/2048) × FGAIN 4, where $0 \le$ FGAIN $4 \le 4095$

This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.

1111 1111 1111 = 1.9995

1100 0000 0000 = 1.5

1001 0000 0000 = 1.125 (default)

1000 0000 0000 = 1

0100 0000 0000 = 0.5

0011 1111 1111 to 0000 0000 0000 = Reserved

STRUMENTS

AS

www.ti.com

Table 2-71. F-Bit and V-Bit Decode Control 1 Register

Subaddress	69h						
Default	00h						
7	6	5	4	3	2	1	0
Reserved			VPLL	Adaptive	Reserved	F-bit Mo	ode [1:0]

VPLL:

VPLL time constant control

0 = VPLL adapts the time constant to the input signal (default)

1 = VPLL time constants are fixed

Adaptive:

0 = Enable F-bit and V-bit adaptation to detected lines per frame (default)

1 = Disable F-bit and V-bit adaptation to detected lines per frame

F-bit mode:

00 = Auto mode. If lines per frame is standard decoded F and V bits as per ITU-R BT. 656 standard from line count, decode F bit from VSYNC input and set V-bit = 0 (default).

01 = Decode F and V bits from input syncs

10 = Reserved

11 = Always decode F and V bits from line count

This register is used in conjunction with the F-bit and V-bit control 2 register (subaddress 75h) as indicated:

REGIST	ER 69H	REGIST	ER 75H	MODE	STAND	ARD LPF	NONSTANDARD LPF		
BIT 1	BIT 0	BIT 3	BIT 2	MODE	F	v	F	v	
0	0	0	0	Reserved	Reserved	Reserved	Reserved	Reserved	
0	0	0	1	TVP5160	656	656	Toggle	Switch9	
0	0	1	0	TVP5160	656	656	Pulse	0	
0	0	1	1	Reserved	Reserved	Reserved	Reserved	Reserved	
0	1	0	0	Reserved	Reserved	Reserved	Reserved	Reserved	
0	1	0	1		656	656	Toggle	Switch9	
0	1	1	0		656	656	Pulse	0	
0	1	1	1	Reserved	Reserved	Reserved	Reserved	Reserved	
1	0	0	0	Reserved	Reserved	Reserved	Reserved	Reserved	
1	0	0	1	Reserved	Reserved	Reserved	Reserved	Reserved	
1	0	1	0	Reserved	Reserved	Reserved	Reserved	Reserved	
1	0	1	1	Reserved	Reserved	Reserved	Reserved	Reserved	
1	1	0	0	TVP5146	656	656	Even = 1 Odd = toggle	Switch	
1	1	0	1	TVP5146	656	656	Toggle	Switch	
1	1	1	0	TVP5146	656	656	Pulse	Switch	
1	1	1	1	Reserved	Reserved	Reserved	Reserved	Reserved	

656 = ITU-R BT.656 standard

Toggle = Toggles from field to field

Pulse = Pulses low for 1 line prior to field transition

Switch = V bit switches high before the F-bit transition and low after the F-bit transition

Switch9 = V bit switches high 1 line prior to the F-bit transition, then low after nine lines

Reserved = Not used

RUMENTS

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-72. Back-End AGC Control Register

Subaddress	6Ch						
Default	08h						
7	6	5	4	3	2	1	0
	R	eserved		1	Peak	Color	Svnc

This register disables the back-end AGC when the front-end AGC uses specific amplitude references (sync-height, color burst, or composite peak) to decrement the front-end gain. For example, writing 0x09 to this register disables the back-end AGC when the front-end AGC uses the sync-height to decrement the front-end gain.

Peak:

Disables back-end AGC when the front-end AGC uses the composite peak as an amplitude reference.

0 = Disabled (default)

1 = Enabled

Color:

Disables back-end AGC when the front-end AGC uses the color burst as an amplitude reference.

- 0 = Disabled (default)
- 1 = Enabled

Sync:

Disables back-end AGC when the front-end AGC uses the sync height as an amplitude reference.

0 = Disabled (default)

1 = Enabled

Table 2-73. AGC Decrement Speed Register

Subaddress	6Fh							
Default	04h							
7	6	5	4	3	2	1	0	
	Reserved AGC decrement speed [2:0]							

AGC decrement speed:

Adjusts gain decrement speed. Only used for composite/luma peaks.

111 = 7 (slowest)

110 = 6 (default)

000 = 0 (fastest)

Table 2-74. ROM Version Register

Subaddress	70h									
	Read only									
7	7 6 5 4 3 2 1 0									
	ROM version [7:0]									

ROM Version [7:0]:

ROM revision number

Table 2-75. RAM Version MSB Register

Subaddress	71h							
	Read only							
7	7 6 5 4 3 2 1 0							
RAM version MSB [7:0]								

RAM version MSB [7:0]:

This register identifies the MSB of the RAM code revision number.

SLES141H-JULY 2005-REVISED FEBRUARY 2012

www.ti.com

RUMENTS

Table 2-76.	AGC White	Peak Proc	essing Register
-------------	------------------	-----------	-----------------

Subaddress	74h						
Default	00h						
7	6	5	4	3	2	1	0
Luma peak /	A Reserved	Color burst A	Sync height A	Luma peak B	Composite peak	Color burst B	Sync height B

Luma peak A:

Use of the luma peak as a video amplitude reference for the back-end feed-forward type AGC algorithm

0 = Enabled (default)

1 = Disabled

Color burst A:

Use of the color burst amplitude as a video amplitude reference for the back-end

Note: Not available for SECAM, component, and B/W video sources.

0 = Enabled (default)

1 = Disabled

Sync height A:

Use of the sync height as a video amplitude reference for the back-end feed-forward type AGC algorithm

0 = Enabled (default)

1 = Disabled

Luma peak B:

Use of the luma peak as a video amplitude reference for front-end feedback type AGC algorithm

0 = Enabled (default)

1 = Disabled

Composite peak:

Use of the composite peak as a video amplitude reference for front-end feedback type AGC algorithm **Note**: Required for CVBS and SCART (with color burst) video sources.

0 = Enabled (default)

1 = Disabled

Color burst B:

Use of the color burst amplitude as a video amplitude reference for front-end feedback type AGC algorithm

Note: Not available for SECAM, component, and B/W video sources

0 = Enabled (default)

1 = Disabled

Sync height B:

Use of the sync-height as a video amplitude reference for front-end feedback type AGC algorithm

0 = Enabled (default)

1 = Disabled

Note: If all 4 bits of the lower nibble are set to logic 1 (that is, no amplitude reference selected), then the front-end analog and digital gains are automatically set to nominal values of 2 and 2304, respectively.

If all 4 bits of the upper nibble are set to logic 1 (that is, no amplitude reference selected), then the back-end gain is set automatically to unity.

If the input sync height is greater than 100% and the AGC-adjusted output video amplitude becomes less than 100%, then the back-end scale factor attempts to increase the contrast in the back end to restore the video amplitude to 100%.

www.ti.com

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-77. F-Bit and V-Bit Control 2 Register

Subaddress	75h						
Default	16h						
7	6	5	4	3	2	1	0
	Reserved		Fast lock	F and	V [1:0]	Phase detector	HPLL

Fast lock:

Enable fast lock where vertical PLL is reset and a 2-second timer is initialized when vertical lock is lost; during time-out the detected input VSYNC is output.

0 = Disabled

1 = Enabled (default)

F and V [1:0]

F AND V	LINES PER FRAME	F BIT	V BIT	
00	Standard	ITU-R BT 656	ITU-R BT 656	
	Nonstandard even	Forced to 1	Switch at field boundary	
	Nonstandard odd	Toggles	Switch at field boundary	
01	Standard	ITU-R BT 656	ITU-R BT 656	
	Nonstandard	Toggles	Switch at field boundary	
10	Standard	ITU-R BT 656	ITU-R BT 656	
	Nonstandard	Pulsed mode	Switch at field boundary	
11		Reserved		

Phase detector:

Enable integral window phase detector

0 = Disabled

1 = Enabled (default)

HPLL:

Enable horizontal PLL to free run

0 = Disabled (default)

1 = Enabled

Table 2-78. VCR Trick Mode Control Register

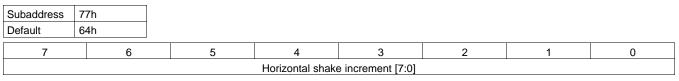
Subaddress	76h							
Default	8Ah							
7	6	5	4	3	2	1	0	
Switch heade	er	Horizontal shake threshold [6:0]						

Switch header:

When in VCR trick mode, the header noisy area around the head switch is skipped.

0 = Disabled

1 = Enabled (default)


Horizontal shake threshold [6:0]:

000 0000 = Zero threshold

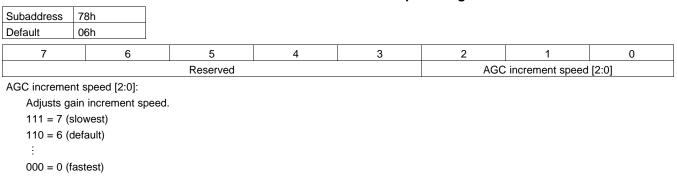
000 1010 = 0Ah (default)

111 1111 = Largest threshold

Table 2-79. Horizontal Shake Increment Register

Horizontal shake increment [7:0]: 000 0000 = 0 000 1010 = 64h (default)

111 1111 = FFh


SLES141H-JULY 2005-REVISED FEBRUARY 2012

www.ti.com

TRUMENTS

AS

Table 2-80. AGC Increment Speed Register

Table 2-81. AGC Increment Delay Register

Subaddress	79h							
Default	1Eh							
7	6	5	4	3	2	1	0	
AGC increment delay [7:0]								

AGC increment delay:

Number of frames to delay gain increments 1111 1111 = 255 : 0001 1110 = 30 (default) : 0000 0000 = 0

Table 2-82. Chip ID MSB Register

Subaddress	80h							
	Read only							
7	6	5	4	3	2	1	0	
CHIP ID MSB [7:0]								

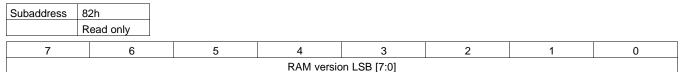
CHIP ID MSB [7:0]:

This register identifies the MSB of the device ID. Value = 51h

Table 2-83. Chip ID LSB Register

Subaddress	81h							
	Read only							
7	6	5	4	3	2	1	0	
CHIP ID LSB [7:0]								

CHIP ID LSB [7:0]:


This register identifies the LSB of the device ID. Value = 46h

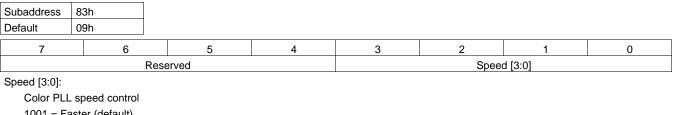
TEXAS INSTRUMENTS

www.ti.com

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-84. RAM Version LSB Register

RAM version LSB [7:0]:


This register identifies the LSB of the RAM code revision number.

Example:

Patch Release = v08.00.06 ROM Version = 08h RAM Version MSB = 00h

RAM Version LSB = 06h

Table 2-85. Color PLL Speed Control Register

1001 = Faster (default) 1010 = 1011 = Slower

Other = Reserved

Table 2-86. Status Request Register

Subaddress	97h						
Default	00h						
7	6	5	4	3	2	1	0
			Reserved				Capture

Capture:

Setting a 1b in this register causes the internal processor to capture the current settings of the AGC status and the vertical line count registers. Because this capture is not immediate, it is necessary to check for completion of the capture by reading the capture bit repeatedly after setting it and waiting for it to be cleared by the internal processor. Once the capture bit is 0b, the AGC status and vertical line counters (3Ch/3Dh and 9Ah/9Bh) have been updated and can be safely read in any order.

Table 2-87. Vertical Line Count Register

Subaddress	9Ah-9Bh Read only									
Subaddress	7	6	5	4	3	2	1	0		
9Ah				Vertical	line [7:0]					
9Bh		Reserved Vertical line [9:8]								

Vertical line [9:0]:

Represent the detected a total number of lines from the previous frame. This can be used with nonstandard video signals, such as a VCR in trick mode, to synchronize downstream video circuitry.

Because this register is a double-byte register, it is necessary to capture the setting into the register to ensure that the value is not updated between reading the lower and upper bytes. To cause this register to capture the current settings, bit 0 of the status request register (subaddress 97h) must be set to a 1b. Once the internal processor has updated and can be read, either byte may be read first, because no further update will occur until bit 0 of 97h is set to 1b again.

www.ti.com

TRUMENTS

Table 2-88. AGC Decrement Delay Register

AGC decrement delay:

Number of frames to delay gain decrements 1111 1111 = 255 0001 1110 = 30 (default) 0000 0000 = 0

Table 2-89. VDP TTX Filter and Mask Register

Subaddress	B1h	B2h	B3h	B4h	B5h	B6h	B7h	B8h	B9h	BAh	
Default	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	
Subaddres	s	7	6	5	4	3	3	2	1	0	
B1h			Filter 1 I	Mask 1				Filter 1 Pa	ttern 1		
B2h			Filter 1 I	Mask 2				Filter 1 Pa	ttern 2		
B3h			Filter 1 I	Mask 3				Filter 1 Pa	ttern 3		
B4h		Filter 1 Mask 4						Filter 1 Pa	ttern 4		
B5h			Filter 1 I	Mask 5				Filter 1 Pa	ttern 5		
B6h			Filter 2 I	Mask 1			Filter 2 Pattern 1				
B7h			Filter 2 I	Mask 2		Filter 2 Pattern 2					
B8h			Filter 2 I	Mask 3		Filter 2 Pattern 3					
B9h			Filter 2 I	Mask 4		Filter 2 Pattern 4					
BAh			Filter 2	Mask 5				Filter 2 Pa	ttern 5		

For an NABTS system, the packet prefix consists of five bytes. Each byte contains four data bits (D[3:0]) interlaced with four Hamming protection bits (H[3:0]):

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D[3]	H[3]	D[2]	H[2]	D[1]	H[1]	D[0]	H[0]

Only the data portion D[3:0] from each byte is applied to a teletext filter function with corresponding pattern bits P[3:0] and mask bits M[3:0]. The filter ignores hamming protection bits.

For a WST system (PAL or NTSC), the packet prefix consists of two bytes. The two bytes contain three bits of magazine number (M[2:0]) and five bits of row address (R[4:0]), interlaced with eight Hamming protection bits H[7:0]:

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
R[0]	H[3]	M[2]	H[2]	M[1]	H[1]	M[0]	H[0]
R[4]	H[7]	R[3]	H[6]	R[2]	H[5]	R[1]	H[4]

The mask bits enable filtering using the corresponding bit in the pattern register. For example, a 1 in the LSB of mask 1 means that the filter module must compare the LSB of nibble 1 in the pattern register to the first data bit on the transaction. If these match, then a true result is returned. A 0 in a bit of mask means that the filter module must ignore that data bit of the transaction. If all 0s are programmed in the mask bits, then the filter matches all patterns returning a true result (default 00h).

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-90. VDP TTX Filter Control Register

Subaddress	BBh						
Default	00h						
7	6	5	4	3	2	1	0
	Reserved		Filter lo	gic [1:0]	Mode	TTX filter 2 enable	TTX filter 1 enable

Filter logic [1:0]:

Allow different logic to be applied when combining the decision of Filter 1 and Filter 2 as follows:

00 = NOR (default)

01 = NAND

10 = OR

11 = AND

Mode:

Indicates which teletext mode is in use:

0 = Teletext filter applies to 2 header bytes (default)

1 = Teletext filter applies to 5 header bytes

TTX filter 2 enable:

Provides for enabling the teletext filter function within the VDP.

0 = Disable (default)

1 = Enable

TTX filter 1 enable:

Provides for enabling the teletext filter function within the VDP.

0 = Disable (default)

1 = Enable

If the filter matches or if the filter mask is all zeros, then a true result is returned.

TVP5146M2

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Texas Instruments

www.ti.com

Table 2-91. VDP FIFO Word Count Register

Subaddress	BCh						
	Read only						
7	6	5	4	3	2	1	0
			FIFO word	count [7:0]			

FIFO word count [7:0]:

This register provides the number of words in the FIFO. **Note**: 1 word equals 2 bytes.

TEXAS INSTRUMENTS

TVP5146M2

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-92. VDP FIFO Interrupt Threshold Register

Subaddress	BDh										
Default	80h										
7	6	5	4	3	2	1	0				
	Threshold [7:0]										

Threshold [7:0]:

This register is programmed to trigger an interrupt when the number of words in the FIFO exceeds this value. **Note**: 1 word equals 2 bytes.

Table 2-93. VDP FIFO Reset Register

Subaddress	BFh							
Default	00h							
7	6	5	4	3	2	1	0	
	Reserved							

FIFO reset:

Writing any data to this register clears the FIFO and VDP data registers (CC, WSS/CGMS, VITC, and VPS/Gemstar). After clearing them, this register is automatically cleared.

Table 2-94. VDP FIFO Output Control Register

Subaddress Default	C0h 00h						
7	6	5	4	3	2	1	0
			Reserved				Host access enable

Host access enable:

This register is programmed to allow the host port access to the FIFO or to allow all VDP data to go out the video output.

0 = Output FIFO data to the video output Y_[9:2] (default)

1 = Allow host port access to the FIFO data

Table 2-95. VDP Line Number Interrupt Register

Subaddress	C1h						
Default	00h						
7	6	5	4	3	2	1	0
Field 1 enable	Field 2 enable			Line nun	nber [5:0]		

Field 1 interrupt enable:

0 = Interrupt disabled (default)

1 = Interrupt enabled

Field 2 interrupt enable:

0 = Interrupt disabled (default)

1 = Interrupt enabled

Line number [5:0]:

Interrupt line number (default 00h)

This register is programmed to trigger an interrupt when the video line number exceeds this value in bits [5:0]. This interrupt must be enabled at address F4h.

Note: The line number value of zero or one is invalid and does not generate an interrupt.

www.ti.com

STRUMENTS

Table 2-96. VDP Pixel Alignment Register

Subaddress	C2h-C3h							
Default	01Eh							
Subaddress	7	6	5	4	3	2	1	0
C2h				Pixel aligr	nment [7:0]			
C3h		Reserved Pixel alignment [9:0]						

Pixel alignment [9:0]:

These registers form a 10-bit horizontal pixel position from the falling edge of horizontal sync, where the VDP controller initiates the program from one line standard to the next line standard. For example, the previous line of teletext to the next line of closed caption. This value must be set so that the switch occurs after the previous transaction has cleared the delay in the VDP, but early enough to allow the new values to be programmed before the current settings are required.

The default value is 0x1E and has been tested with every standard supported here. A new value is needed only if a custom standard is in use.

Table 2-97. VDP Line Start Register

Subaddress	D6h									
Default	06h									
7	6	5	4	3	2	1	0			
VDP line start [7:0]										

VDP line start [7:0]:

Sets the VDP line starting address

This register must be set properly before enabling the line mode registers. VDP processor works only in the VBI region set by this register and the VDP line stop register at subaddress D7h.

Table 2-98. VDP Line Stop Register

Subaddress	D7h										
Default	1Bh										
7	6	5	4	3	2	1	0				
	VDP line stop [7:0]										

VDP line stop [7:0]:

Sets the VDP stop line address

Table 2-99. VDP Global Line Mode Register

Subaddress	D8h									
Default	FFh									
7	6	5	4	3	2	1	0			
Global line mode [7:0]										

Global line mode [7:0]:

VDP processing for multiple lines set by the VDP start line register at subaddress D6h and the VDP stop line register at subaddress D7h.

Global line mode register has the same bit definitions as the line mode registers (see Table 2-121). General line mode has priority over the global line mode.

TEXAS INSTRUMENTS

www.ti.com

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-100. VDP Full Field Enable Register

Subaddress	D9h						
Default	00h						
7	6	5	4	3	2	1	0
			Reserved				Full field enable

Full field enable:

0 = Disabled full field mode(default)

1 = Enabled full field mode

This register enables the full field mode. In this mode, all lines outside the vertical blank area and all lines in the line mode register programmed with FFh are sliced with the definition of the VDP full field mode register at subaddress DAh. Values other than FFh in the line mode registers allow a different slice mode for that particular line.

Table 2-101. VDP Full Field Mode Register

Subaddress	DAh									
Default	FFh									
7	6	5	4	3	2	1	0			
Full field mode [7:0]										

Full field mode [7:0]:

This register programs the specific VBI standard for full field mode. It can be any VBI standard. Individual line settings take priority over the full field register. This allows each VBI line to be programmed independently but have the remaining lines in full field mode. The full field mode register has the same bit definition as line mode registers (default FFh).

Global line mode has priority over the full field mode.

Table 2-102. VBUS Data Access With No VBUS Address Increment Register

Subaddress	E0h						
Default	00h						
7	6	5	4	3	2	1	0
			VBUS d	lata [7:0]			

VBUS data [7:0]:

VBUS data register for VBUS single byte read/write transaction.

Table 2-103. VBUS Data Access With VBUS Address Increment Register

Subaddress	E1h								
Default	00h								
7	6	5	4	3	2	1	0		
VBUS data [7:0]									

VBUS data [7:0]:

VBUS data register for VBUS multi-byte read/write transaction. VBUS address is auto-incremented after each data byte read/write.

Table 2-104. FIFO Read Data Register

Subaddress	E2h						
	Read only						
7	6	5	4	3	2	1	0
			FIFO Read	d Data [7:0]			

FIFO Read Data [7:0]:

This register is provided to access VBI FIFO data through the host port. All forms of teletext data come directly from the FIFO, while all other forms of VBI data can be programmed to come from registers or from the FIFO. If the host port is to be used to read data from the FIFO, bit 0 (host access enable) in the VDP FIFO output control register at subaddress C0h must be set to 1 (see Table 2-94).

www.ti.com

STRUMENTS

XAS

Table 2-105. VBUS Address Register

Subaddress	E8h	E9h	EA	h					
Default	00h	00h	00ł	ı					
Subaddress	s 7	6		5	4	3	2	1	0
E8h					VBUS add	tress [7:0]			
E9h		VBUS address [15:8]							
EAh		VBUS address [23:16]							

VBUS address [23:0]:

VBUS is a 24-bit wide internal bus. The user must program in these registers the 24-bit address of the internal register to be accessed via host port indirect access mode.

Table 2-106. Interrupt Raw Status 0 Register

Subaddress	F0h						
	Read only						
7	6	5	4	3	2	1	0
FIFO THRS	TTX	WSS/CGMS	VPS/Gemstar	VITC	CC F2	CC F1	Line

The host Interrupt Raw Status 0 and Interrupt Raw Status 1 registers represent the interrupt status without applying mask bits. See also the interrupt raw status 1 register at subaddress F1h (Table 2-107).

FIFO THRS:

FIFO threshold passed, unmasked

0 = Not passed

1 = Passed

TTX:

Teletext data available unmasked

- 0 = Not available
- 1 = Available

WSS/CGMS:

WSS/CGMS data available unmasked

0 = Not available

1 = Available

VPS/Gemstar:

VPS/Gemstar data available unmasked

0 = Not available

1 = Available

VITC:

VITC data available unmasked

- 0 = Not available
- 1 = Available

CC F2:

CC field 2 data available unmasked

- 0 = Not available
- 1 = Available

CC F1:

CC field 1 data available unmasked

- 0 = Not available
- 1 = Available

Line:

Line number interrupt unmasked

0 = Not available

1 = Available

Table 2-107. Interrupt Raw Status 1 Register

Subaddress	F1h Read only						
7	6	5	4	3	2	1	0
		Reserved			Macrovision status changed	Standard changed	FIFO full

Macrovision status changed:

unmasked

0 = Macrovision status unchanged

1 = Macrovision status changed

Standard changed:

unmasked

0 = Video standard unchanged

1 = Video standard changed

FIFO full:

0 = FIFO not full

1 = FIFO was full during write to FIFO

The FIFO full error flag is set when the current line of VBI data cannot enter the FIFO. For example, if the FIFO has only 10 bytes left and teletext is the current VBI line, the FIFO full error flag is set, but no data is written because the entire teletext line does not fit. However, if the next VBI line is closed caption requiring only 2 bytes of data plus the header, this goes into the FIFO even if the full error flag is set.

www.ti.com

STRUMENTS

XAS

Table 2-108. Interrupt Status 0 Register

Subaddress	F2h						
	Read only						
7	6	5	4	3	2	1	0
FIFO THRS	S TTX	WSS/CGMS	VPS/Gemstar	VITC	CC F2	CC F1	Line

Interrupt Status 0 and Interrupt Status 1 (see Table 2-109) registers represent the interrupt status after applying mask bits. Therefore, the status bits are the result of a logical AND between the raw status and mask bits. The external interrupt terminal is derived from this register as an OR function of all nonmasked interrupts in this register.

Reading data from the corresponding register does not clear the status flags automatically. These flags are reset using the corresponding bits in the Interrupt Clear 0 and Interrupt Clear 1 registers.

FIFO THRS:

FIFO threshold passed, masked

- 0 = Not passed
- 1 = Passed

TTX:

Teletext data available masked

- 0 = Not available
- 1 = Available

WSS/CGMS:

- WSS/CGMS data available masked
- 0 = Not available
- 1 = Available

VPS/Gemstar:

VPS/Gemstar data available masked

- 0 = Not available
- 1 = Available

VITC:

- VITC data available masked
- 0 = Not available
- 1 = Available

CC F2:

- CC field 2 data available masked
- 0 = Not available
- 1 = Available

CC F1:

- CC field 1 data available masked
- 0 = Not available
- 1 = Available

Line:

- Line number interrupt masked
- 0 = Not available
- 1 = Available

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-109. Interrupt Status 1 Register

Subaddress	F3h						
	Read only						
7	6	5	4	3	2	1	0
		Reserved			Macrovision status changed	Standard changed	FIFO full

Macrovision status changed:

Macrovision status changed masked

0 = Macrovision status not changed

1 = Macrovision status changed

Standard changed:

Standard changed masked

0 = Video standard not changed

1 = Video standard changed

FIFO full:

Masked status of FIFO

0 = FIFO not full

1 = FIFO was full during write to FIFO, see the interrupt mask 1 register at subaddress F5h for details (see Table 2-111)

www.ti.com

STRUMENTS

XAS

Table 2-110. Interrupt Mask 0 Register

Subaddress	F4h						
	Read only						
7	6	5	4	3	2	1	0
FIFO THRS	TTX	WSS/CGMS	VPS/Gemstar	VITC	CC F2	CC F1	Line

The host Interrupt Mask 0 and Interrupt Mask 1 (see Table 2-111) registers can be used by the external processor to mask unnecessary interrupt sources for the Interrupt Status 0 and Interrupt Status 1 register bits, and for the external interrupt terminal. The external interrupt is generated from all nonmasked interrupt flags.

FIFO THRS:

FIFO threshold passed mask

- 0 = Disabled (default)
- 1 = Enabled FIFO_THRES interrupt

TTX:

Teletext data available mask

0 = Disabled (default)

1 = Enabled TTX available interrupt

WSS/CGMS:

WSS/CGMS data available mask

0 = Disabled (default)

1 = Enabled WSS/CGMS available interrupt

VPS/Gemstar:

VPS/Gemstar data available mask

0 = Disabled (default)

1 = Enabled VPS/Gemstar available interrupt

VITC:

VITC data available mask

- 0 = Disabled (default)
- 1 = Enabled VITC available interrupt

CC F2:

- CC field 2 data available mask
- 0 = Disabled (default)
- 1 = Enabled CC field 2 available interrupt

CC F1:

CC field 1 data available mask

- 0 = Disabled (default)
- 1 = Enabled CC field 1 available interrupt

LINE:

Line number interrupt mask

- 0 = Disabled (default)
- 1 = Enabled Line_INT interrupt

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-111. Interrupt Mask 1 Register

Subaddress	F5h						
	Read only						
7	6	5	4	3	2	1	0
		Reserved			Macrovision status changed	Standard changed	FIFO full

Macrovision status changed:

Macrovision status changed mask

0 = Macrovision status unchanged

1 = Macrovision status changed

Standard changed:

Standard changed mask

0 = Disabled (default)

1 = Enabled video standard changed

FIFO full:

FIFO full mask

0 = Disabled (default)

1 = Enabled FIFO full interrupt

www.ti.com

TRUMENTS

XAS

Table 2-112. Interrupt Clear 0 Register

Subaddress	F6h						
	Read only						
7	6	5	4	3	2	1	0
FIFO THRS	TTX	WSS/CGMS	VPS/Gemstar	VITC	CC F2	CC F1	Line

The host Interrupt Clear 0 and Interrupt Clear 1 (see Table 2-113) registers are used by the external processor to clear the interrupt status bits in the host Interrupt Status 0 and Interrupt Status 1 registers. When no nonmasked interrupts remain set in the registers, the external interrupt terminal also becomes inactive.

FIFO THRS:

FIFO threshold passed clear

0 = No effect (default)

1 = Clear FIFO_THRES bit in status register 0 bit 7

TTX:

Teletext data available clear

0 = No effect (default)

1 = Clear TTX available bit in status register 0 bit 6

WSS/CGMS:

WSS/CGMS data available clear

- 0 = No effect (default)
- 1 = Clear WSS/CGMS available bit in status register 0 bit 5

VPS/Gemstar:

VPS/Gemstar data available clear

0 = No effect (default)

1 = Clear VPS/Gemstar available bit in status register 0 bit 4

VITC:

VITC data available clear

- 0 = Disabled (default)
- 1 = Clear VITC available bit in status register 0 bit 3

CC F2:

- CC field 2 data available clear
- 0 = Disabled (default)
- 1 = Clear CC field 2 available bit in status register 0 bit 2

CC F1:

CC field 1 data available clear

0 = Disabled (default)

1 = Clear CC field 1 available bit in status register 0 bit 1

LINE:

Line number interrupt clear

- 0 = Disabled (default)
- 1 = Clear Line interrupt available bit in status register 0 bit 0

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-113. Interrupt Clear 1 Register

Subaddress	F7h Read only						
7	6	5	4	3	2	1	0
		Reserved			Macrovision status changed	Standard changed	FIFO full

Macrovision status changed:

Clear Macrovision status changed flag

0 = No effect (default)

1 =Clear bit 2 (Macrovision status changed) in the interrupt status 1 register at subaddress F3h and the interrupt raw status 1 register at subaddress F1h

Standard changed:

Clear standard changed flag

0 = No effect (default)

1 =Clear bit 1 (video standard changed) in the interrupt status 1 register at subaddress F3h and the interrupt raw status 1 register at subaddress F1h

FIFO full:

Clear FIFO full flag

0 = No effect (default)

1 = Clear bit 0 (FIFO full flag) in the interrupt status 1 register at subaddress F3h and the interrupt raw status 1 register at subaddress F1h

TRUMENTS

XAS

2.12 VBUS Register Definitions

Table 2-114. VDP Closed Caption Data Register

Subaddress	80 051Ch - 80 0	051Fh								
	Read only									
Subaddress	7	6	5	4	3	2	1	0		
80 051Ch		Closed Caption Field 1 byte 1								
80 051Dh				Closed Caption	Field 1 byte 2					
80 051Eh		Closed Caption Field 2 byte 1								
80 051Fh		Closed Caption Field 2 byte 2								

These registers contain the closed caption data arranged in bytes per field.

Table 2-115. VDP WSS Data Register

Subaddress	80 0520h - 80 0526h
	Read only

WSS/CGMS NTSC (CGMS)

Subaddress	7	6	5	4	3	2	1	0	Byte
80 0520h			b5	b4	b3	b2	b1	b0	WSS/CGMS Field 1 Byte 1
80 0521h	b13	b12	b11	b10	b9	b8	b7	b6	WSS/CGMS Field 1 Byte 2
80 0522h			b19	b18	b17	b16	b15	b14	WSS/CGMS Field 1 Byte 3
80 0523h				Rese	erved				
80 0524h			b5	b4	b3	b2	b1	b0	WSS/CGMS Field 2 Byte 1
80 0525h	b13	b12	b11	b10	b9	b8	b7	b6	WSS/CGMS Field 2 Byte 2
80 0526h			b19	b18	b17	b16	b15	b14	WSS/CGMS Field 2 Byte 3

These registers contain the wide screen signaling data for NTSC.

Bits 0 to 1 represent word 0, aspect ratio

Bits 2 to 5 represent word 1, header code for word 2

Bits 6 to 13 represent word 2, copy control

Bits 14 to 19 represent word 3, CRC

WSS/CGMS PAL/SECAM

Subaddress	7	6	5	4	3	2	1	0	Byte
80 0520h	b7	b6	b5	b4	b3	b2	b1	b0	WSS/CGMS Field 1 Byte 1
80 0521h	b13 b12 b11 b10 b9 b8						WSS/CGMS Field 1 Byte 2		
80 0522h									
80 0523h				Rese	erved				
80 0524h	b7	b6	b5	b4	b3	b2	b1	b0	WSS/CGMS Field 2 Byte 1
80 0525h			WSS/CGMS Field 2 Byte 2						
80 0526h									

These registers contain the wide screen signaling data for PAL/SECAM:

Bits 0 to 3 represent Group 1, Aspect Ratio

Bits 4 to 7 represent Group 2, Enhanced Services

Bits 8 to 10 represent Group 3, Subtitles

Bits 11 to 13 represent Group 4, Others

www.ti.com

Table 2-116. VDP VITC Data Register

Subaddress	80 052Ch - 80	0534h									
	Read only										
Subaddress	5 7	6	5	4	3	2	1	0			
80 052Ch		VITC frame byte 1									
80 052Dh		VITC frame byte 2									
80 052Eh		VITC seconds byte 1									
80 052Fh				VITC seco	onds byte 2						
80 0530h				VITC min	utes byte 1						
80 0531h				VITC min	utes byte 2						
80 0532h				VITC ho	urs byte 1						
80 0533h				VITC ho	urs byte 2						
80 0534h				VITC C	RC byte						

These registers contain the VITC data.

Table 2-117. VDP V-Chip TV Rating Block 1 Register

Subaddress	80 0540h						
	Read only			[[[1
7	6	5	4	3	2	1	0
Reserved	14-D	PG-D	Reserved	MA-L	14-L	PG-L	Reserved

TV Parental Guidelines Rating Block 3

14-D: When incoming video program is TV-14-D rated, this bit is set high.

PG-D: When incoming video program is TV-PG-D rated, this bit is set high.

MA-L: When incoming video program is TV-MA-L rated, this bit is set high.

14-L: When incoming video program is TV-14-L rated, this bit is set high.

PG-L: When incoming video program is TV-PG-L rated, this bit is set high.

Table 2-118. VDP V-Chip TV Rating Block 2 Register

Subaddress	80 0541h						
	Read only						
7	6	5	4	3	2	1	0
MA-S	14-S	PG-S	Reserved	MA-V	14-V	PG-V	Y7-FV

TV Parental Guidelines Rating Block 2

MA-S: When incoming video program is TV-MA-S rated, this bit is set high.

14-S: When incoming video program is TV-14-S rated, this bit is set high.

PG-S: When incoming video program is TV-PG-S rated, this bit is set high.

 $\ensuremath{\mathsf{MA-V}}\xspace$ When incoming video program is TV-MA-V rated, this bit is set high.

14-V: When incoming video program is TV-14-V rated, this bit is set high.

PG-V: When incoming video program is TV-PG-S rated, this bit is set high.

Y7-FV: When incoming video program is TV-Y7-FV rated, this bit is set high.

www.ti.com

RUMENTS

				ip i v itatilig i	blook o hogi		
Subaddress	80 0542h						
	Read only						
7	6	5	4	3	2	1	0
None	TV-MA	TV-14	TV-PG	TV-G	TV-Y7	TV-Y	None

Table 2-119. VDP V-Chip TV Rating Block 3 Register

TV Parental Guidelines Rating Block 1

None: No block intended

TV-MA: When incoming video program is TV-MA rated in TV Parental Guidelines Rating, this bit is set high. TV-14: When incoming video program is TV-14 rated in TV Parental Guidelines Rating, this bit is set high. TV-PG: When incoming video program is TV-PG rated in TV Parental Guidelines Rating, this bit is set high. TV-G: When incoming video program is TV-G rated in TV Parental Guidelines Rating, this bit is set high. TV-Y7: When incoming video program is TV-Y7 rated in TV Parental Guidelines Rating, this bit is set high. TV-Y2: When incoming video program is TV-Y7 rated in TV Parental Guidelines Rating, this bit is set high.

Table 2-120. VDP V-Chip MPAA Rating Data Register

Subaddress	80 0543h						
	Read only						
7	6	5	4	3	2	1	0
Not Rated	Х	NC-17	R	PG-13	PG	G	NA

MPAA Rating Block (E5h)

Not Rated: When incoming video program is Not Rated rated in MPAA Rating, this bit is set high.

X: When incoming video program is X rated in MPAA Rating, this bit is set high.

NC-17: When incoming video program is NC-17 rated in MPAA Rating, this bit is set high.

R: When incoming video program is R rated in MPAA Rating, this bit is set high.

PG-13: When incoming video program is PG-13 rated in MPAA Rating, this bit is set high.

PG: When incoming video program is PG rated in MPAA Rating, this bit is set high.

G: When incoming video program is G rated in MPAA Rating, this bit is set high.

N/A: When incoming video program is N/A rated in MPAA Rating, this bit is set high.

SLES141H-JULY 2005-REVISED FEBRUARY 2012

Table 2-121. VDP General Line Mode and Line Address Register

Subaddress 80 0600h - 80 0611h

Default line mode = FFh, line address = 00h

Subaddress	7	6	5	4	3	2	1	0
80 0600h				Line a	ddress 1			
80 0601h				Line ı	mode 1			
80 0602h				Line a	ddress 2			
80 0603h				Line ı	mode 2			
80 0604h				Line a	ddress 3			
80 0605h				Line ı	mode 3			
80 0606h				Line a	ddress 4			
80 0607h				Line ı	mode 4			
80 0608h				Line a	ddress 5			
80 0609h				Line ı	mode 5			
80 060Ah				Line a	ddress 6			
80 060Bh				Line ı	mode 6			
80 060Ch				Line a	ddress 7			
80 060Dh				Line ı	mode 7			
80 060Eh				Line a	ddress 8			
80 060Fh				Line ı	node 8			
80 0610h				Line a	ddress 9			
80 0611h				Line ı	node 9			

Line address [7:0]:

Line number to be processed by a VDP set by a line mode register (default 00h)

Line mode x [7:0]

Bit 7

- 0 = Disabled filters
- 1 = Enabled filters for teletext and CC (null byte filter) (default)

Bit 6

- 0 = Send sliced VBI data to registers only
- 1 = Send sliced VBI data to FIFO and registers, teletext data only goes to FIFO (default)

Bit 5

- 0 = Allow VBI data with errors in the FIFO
- 1 = Do not allow VBI data with errors in the FIFO (default)

Bit 4

- 0 = Disabled error detection and correction
- 1 = Enabled error detection and correction (teletext only) (default)

Bit 3

- 0 = Field 1
- 1 = Field 2 (default)

```
Bit [2:0]
```

- 000 = Teletext (WST625, Chinese Teletext, NABTS 525)
- 001 = CC (US, European, Japan, China)
- 010 = WSS/CGMS (525, 625)
- 011 = VITC
- 100 = VPS (PAL only), Gemstar (NTSC only)
- 101 = USER 1
- 110 = USER 2
- 111 = Reserved (active video) (default)

www.ti.com

STRUMENTS

EXAS

Table 2-122. VDP VPS/Gemstar Data Register

Subaddress	80 0700h - 80 0	70Ch							
	Read only								
VPS									
Subaddress	7	6	5	4	3	2	1	0	
80 0700h				VPS t	oyte 1				
80 0701h		VPS byte 2							
80 0702h		VPS byte 3							
80 0703h		VPS byte 4							
80 0704h				VPS b	oyte 5				
80 0705h				VPS b	oyte 6				
80 0706h				VPS b	oyte 7				
80 0707h				VPS b	oyte 8				
80 0708h				VPS b	oyte 9				
80 0709h				VPS b	yte 10				
80 070Ah				VPS b	yte 11				
80 070Bh				VPS b	yte 12				
80 070Ch				VPS b	yte 13				

These registers contain the entire VPS data line except the clock run-in code and the frame code.

Gemstar

Subaddress	7	6	5	4	3	2	1	0
80 0700h				Gemstar Fr	ame Code			
80 0701h				Gemstar	· byte 1			
80 0702h				Gemstar	· byte 2			
80 0703h				Gemstar	· byte 3			
80 0704h				Gemstar	· byte 4			
80 0705h				Rese	rved			
80 0706h				Rese	rved			
80 0707h				Rese	rved			
80 0708h				Rese	rved			
80 0709h				Rese	rved			
80 070Ah				Rese	rved			
80 070Bh				Rese	rved			
80 070Ch				Rese	rved			

Table 2-123. Interrupt Configuration Register

Subaddress	B0 0060h						
Default	00h						
7	6	5	4	3	2	1	0
	Reserved				Polarity	Rese	erved

Polarity:

Interrupt terminal polarity

0 = Active high (default)

1 = Active low

www.ti.com

3 Electrical Specifications

3.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

			MIN	MAX	UNIT
IOVDD to IOGND			0.5	4	V
DVDD to DGND			-0.2	2	V
A33VDD ⁽²⁾ to A33GND ⁽³⁾	Supply voltage range	Supply voltage range		3.6	V
A18VDD ⁽⁴⁾ to A18GND ⁽⁵⁾			-0.2	2	V
V _I to DGND	Digital input voltage range		-0.5	4.5	V
V _O to DGND	Digital output voltage range	Digital output voltage range		4.5	V
A _{IN} to AGND	Analog input voltage range		-0.2	2	V
-	Operating free air temperature	Commercial	0	70	о°
IA	Operating free-air temperature	Industrial	-40	85	C
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) CH1_A33VDD, CH2_A33VDD, CH3_A33VDD, CH4_A33VDD

(3) CH1_A33GND, CH2_A33GND, CH3_A33GND, CH4_A33GND

(4) CH1_A18VDD, CH2_A18VDD, CH3_A18VDD, CH4_A18VDD, A18VDD_REF, PLL_A18VDD

(5) CH1_A18GND, CH2_A18GND, CH3_A18GND, CH4_A18GND

3.2 Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
IOV _{DD}	Supply voltage, digital		3	3.3	3.6	V
	Cumplus voltage disitel	Commercial	1.65	1.8	1.95	V
DV _{DD}	Supply voltage, digital	Industrial	1.7	1.8	1.9	V
AV _{DD33}	Supply voltage, analog		3	3.3	3.6	V
A) (Our allows listen and an	Commercial	1.65	1.8	1.95	
AV _{DD18}	Supply voltage, analog	Industrial	1.7	1.8	1.9	V
V _{I(P-P)}	Analog input voltage, analog (ac-coupling necessary)		0.5	1	2	V
VIH	Input voltage high, digital ⁽¹⁾		0.7 IOV _{DD}			V
VIL	Input voltage low, digital ⁽²⁾				$0.3 \text{ IOV}_{\text{DD}}$	V
I _{OH}	High-level output current ⁽³⁾	V _{OUT} = 2.4 V	-4	-8		mA
I _{OL}	Low-level output current	V _{OUT} = 2.4 V	6	8		mA
-		Commercial	0		70	*•
IA	Operating free-air temperature	Industrial	-40	3.3 3.6 1.8 1.95 1.8 1.9 3.3 3.6 1.8 1.95 1.8 1.95 1.8 1.95 1.8 1.95 1.8 1.95 0.3 IOV _{DD} 8 8	°C	

(1) Exception: 0.7 AV_{DD18} for XTAL1 terminal

(2) Exception: 0.3 AV_{DD18} for XTAL1 terminal

(3) Currents out of a terminal are given as a negative number

3.3 Crystal Specifications

	MIN	NOM	MAX	UNIT
Frequency		14.31818		MHz
Frequency tolerance ⁽¹⁾			±50	ppm

(1) This number is the required specification for the external crystal/oscillator and is not tested.

TVP5146M2

SLES141H – JULY 2005 – REVISED FEBRUARY 2012

www.ti.com

TRUMENTS

XAS

3.4 Electrical Characteristics

For minimum/maximum values:

 $IOV_{DD} = 3 V \text{ to } 3.6 V, AV_{DD33} = 3 V \text{ to } 3.6 V,$ Commercial: $AV_{DD18} = 1.65 V \text{ to } 1.95 V, DV_{DD} = 1.65 V \text{ to } 1.95 V, T_A = 0^{\circ}C \text{ to } 70^{\circ}C$ Industrial: $AV_{DD18} = 1.7 V \text{ to } 1.9 V, DV_{DD} = 1.7 V \text{ to } 1.9 V, T_A = -40^{\circ}C \text{ to } 85^{\circ}C$

For typical values:

 $IOV_{DD} = AV_{DD33} = 3.3 \text{ V}, \text{ } AV_{DD18} = DV_{DD} = 1.8 \text{ } \text{V}, \text{ } \text{T}_{\text{A}} = 25^{\circ}\text{C}$

3.5 DC Electrical Characteristics⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
-		CVBS	6		A
I _{DDIO(D)}	3.3-V IO digital supply current	RGB and CVBS	6		mA
		CVBS	66		
I _{DD(D)}	1.8-V digital supply current	RGB and CVBS	67	mA	
		CVBS	16		
I _{DD(33A)}	3.3-V analog supply current	RGB and CVBS	48		mA
I _{DD(18A)}	1.0.)/ analog augaly autrent	CVBS	79		~ ^
	1.8-V analog supply current	S-Video	240		mA
ſ		CVBS	335		
P _{TOT}	Total power dissipation, normal operation	S-Video	730		mW
P _{SAVE}	Total power dissipation, power save		100		mW
P _{DOWN}	Total power dissipation, power down		11		mW
l _{lkg}	Input leakage current			10	μA
CI	Input capacitance ⁽²⁾			8	pF
V _{OH}	Output voltage high ⁽²⁾		0.8 IOV _{DD}		V
V _{OL}	Output voltage low ⁽²⁾			$0.2 \ \text{IOV}_{\text{DD}}$	V

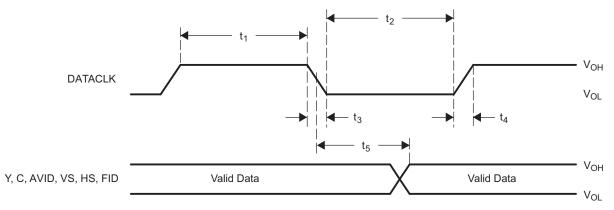
(1) Measured with a load of 10 k Ω in parallel to 15 pF.

(2) Specified by design

3.6 Analog Processing and A/D Converters

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Zi	Input impedance, analog video inputs ⁽¹⁾		200			kΩ
Ci	Input capacitance, analog video inputs ⁽¹⁾				10	pF
V _{i(PP)}	Input voltage range	$C_{coupling} = 47 \text{ nF}$	0.5	1	2	V
ΔG	Gain control range ⁽¹⁾		-6		6	dB
DNL	Differential nonlinearity	AFE only	-1	±0.75	+1	LSB
INL	Integral nonlinearity	AFE only	-2.5	±1	+2.5	LSB
FR	Frequency response	Multiburst (60 IRE)		-0.9		dB
XTALK	Crosstalk ⁽²⁾	1 MHz			-50	dB
SNR	Signal-to-noise ratio, all channels	1 MHz, 1 V _{PP}		54		dB
GM	Gain match ⁽¹⁾⁽³⁾	Full scale, 1 MHz		1.1	1.5	%
NS	Noise spectrum	Luma ramp (100 kHz to full, tilt null)		-58		dB
DP	Differential phase	Modulated ramp		0.5		0
DG	Differential gain	Modulated ramp		±1.5		%

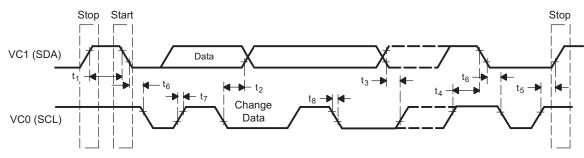
(1) Specified by design


(2) By characterization only

(3) Component inputs only

SLES141H-JULY 2005-REVISED FEBRUARY 2012

3.7 Clocks, Video Data, Sync Timing


	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
	Duty cycle, DATACLK		45	50	55	%	
t ₁	High time, DATACLK			18.5		ns	
t ₂	Low time, DATACLK			18.5		ns	
t ₃	Fall time, DATACLK	90% to 10%			4	ns	
t ₄	Rise time, DATACLK	10% to 90%			4	ns	
		Commercial			10		
t ₅	Output delay time	Industrial			12	ns	

3.8 I²C Host Port Timing

	PARAMETER	MIN	ТҮР	MAX	UNIT
t ₁	Bus free time between STOP and START	1.3			μs
t ₂	Data hold time	0		0.9	μs
t ₃	Data setup time	100			ns
t ₄	Setup time for a (repeated) START condition	0.6			μs
t ₅	Setup time for a STOP condition	0.6			ns
t ₆	Hold time (repeated) START condition	0.6			μs
t ₇	Rise time VC1(SDA) and VC0(SCL) signal			250	ns
t ₈	Fall time VC1(SDA) and VC0(SCL) signal			250	ns
Cb	Capacitive load for each bus line			400	pF
f _{I2C}	I ² C clock frequency			400	kHz

www.ti.com

3.9 Thermal Specifications

	PARAMETER	TEST CONDITIONS ⁽¹⁾	MIN	TYP	MAX	UNIT
θ_{JA}	Junction-to-ambient thermal resistance, still air	Thermal pad soldered to 4-layer High-K PCB		19.04		°C/W
θ_{JC}	Junction-to-case thermal resistance, still air	Thermal pad soldered to 4-layer High-K PCB		0.17		°C/W
T _{J(MAX)}	Maximum junction temperature for reliable operation				105	°C

(1) The exposed thermal pad must be soldered to a High-K PCB with adequate ground plane.

4 Example Register Settings

The following example register settings are provided only as a reference. These settings, given the assumed input connector, video format, and output format, set up the TVP5146M2 decoder and provide video output. Example register settings for other features and the VBI data processor are not provided here.

4.1 Example 1

4.1.1 Assumptions

Input connector:	Composite (VI_1_A) (default)
Video format:	NTSC (J, M), PAL (B, G, H, I, N), or SECAM (default)
	Note : NTSC-443, PAL-Nc, and PAL-M are masked from the autoswitch process by default. See the autoswitch mask register at address 04h.
Output format:	10-bit ITU-R BT.656 with embedded syncs (default)

4.1.2 Recommended Settings

Recommended I^2C writes: For the given assumptions, only one write is required. All other registers are set up by default.

I ² C register address 08h = Luminance processing control 3 register
I^2C data 00h = Optimizes the trap filter selection for NTSC and PAL
I^2C register address 0Eh = Chrominance processing control 2 register
I^2C data 04h = Optimizes the chrominance filter selection for NTSC and PAL
I ² C register address 34h = Output formatter 2 register
I^2C data 11h = Enables YCbCr output and the clock output
Note : HS/CS, VS/VBLK, AVID, FID, and GLCO are logic inputs by default. See output formatter 3 and 4 registers at addresses 35h and 36h, respectively.

Copyright © 2005–2012, Texas Instruments Incorporated

Texas Instruments

www.ti.com

4.2 Example 2

4.2.1 Assumptions

Input connector:S-Video [VI_2_C (luma), VI_1_C (chroma)]Video format:NTSC (J, M, 443), PAL (B, D, G, H, I, N, Nc, 60), or SECAM (default)Output format:10-bit ITU-R BT.656 with discrete sync outputs

4.2.2 Recommended Settings

Recommended I²C writes: This setup requires additional writes to output the discrete sync 10-bit 4:2:2 data, HS, and VS, and to autoswitch between all video formats mentioned above.

I ² C register address 00h	=	Input select register
I ² C data 46h	=	Sets luma to VI_2_C and chroma to VI_1_C
I ² C register address 04h	=	Autoswitch mask register
I ² C data 3Fh	=	Includes NTSC 443 and PAL (M, Nc, 60) in the autoswitch
I ² C register address 08h	=	Luminance processing control 3 register
I ² C data 00h	=	Optimizes the trap filter selection for NTSC and PAL
I ² C register address 0Eh	=	Chrominance processing control 2 register
I ² C data 04h	=	Optimizes the chrominance filter selection for NTSC and PAL
I ² C register address 33h	=	Output formatter 1 register
I ² C data 43h	=	Selects the 10-bit 4:2:2 output format
I ² C register address 34h	=	Output formatter 2 register
I ² C data 11h	=	Enables YCbCr output and the clock output
I ² C register address 36h	=	Output formatter 4 register
I ² C data AFh	=	Enables HS and VS sync outputs

4.3 Example 3

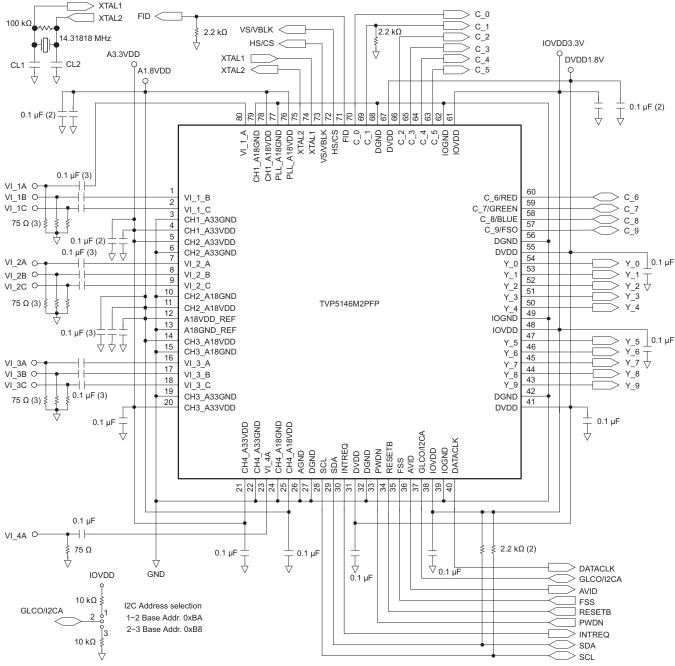
4.3.1 Assumptions

Input connector:Component [VI_1_B (Pb), VI_2_B (Y), VI_3_B (Pr)]Video format:NTSC (J, M, 443), PAL (B, G, H, I, M, N, Nc) and SECAMOutput format:20-bit 4:2:2 YCbCr with discrete sync outputs

4.3.2 Recommended Settings

Recommended I²C writes: This setup requires additional writes to output the discrete sync 20-bit 4:2:2 data, HS, and VS, and to autoswitch between all video formats mentioned above.

I ² C register address 00h =	Input select register
I ² C data 95h =	Sets Pb to VI_1_B, Y to VI_2_B, and Pr to VI_3_B
I ² C register address 04h =	Autoswitch mask register
I ² C data 3Fh =	Includes NTSC 443 and PAL (M, Nc, 60) in the autoswitch
I ² C register address 08h =	Luminance processing control 3 register
I ² C data 00h =	Optimizes the trap filter selection for NTSC and PAL
I ² C register address 0Eh =	Chrominance processing control 2 register
I ² C data 04h =	Optimizes the chrominance filter selection for NTSC and PAL
I ² C register address 33h =	Output formatter 1 register
I ² C data 41h =	Selects the 20-bit 4:2:2 output format
I ² C register address 34h =	Output formatter 2 register
I ² C data 11h =	Enables YCbCr output and the clock output
I ² C register address 36h =	Output formatter 4 register
I ² C data AFh =	Enables HS and VS sync outputs


www.ti.com

INSTRUMENTS

Texas

5 Application Information

5.1 Application Example

- A. If XTAL1 is connected to clock source, input voltage high must be 1.8 V.
- B. Terminals 69 and 71 must be connected to ground through pulldown resistors.
- C. System level ESD protection is not included in this application circuit, but it is highly recommended on the analog video inputs.

Figure 5-1. Example Application Circuit

5.2 Designing With PowerPAD[™] Devices

The TVP5146M2 device is housed in a high-performance, thermally-enhanced, 80-terminal PowerPAD package (TI package designator: 80PFP). Use of the PowerPAD package does not require any special considerations except to note that the thermal pad, which is an exposed die pad on the bottom of the device, is a metallic thermal and electrical conductor. Therefore, if not implementing the PowerPAD PCB features, the use of solder masks (or other assembly techniques) may be required to prevent any inadvertent shorting by the exposed thermal pad of connection etches or vias under the package. The recommended option, however, is not to run any etches or signal vias under the device, but to have only a grounded thermal land as explained in the following paragraphs. Although the actual size of the exposed die pad may vary, the minimum size required for the keep-out area for the 80-terminal PFP PowerPAD package is 8 mm × 8 mm.

It is recommended that there be a thermal land, which is an area of solder-tinned copper, under the PowerPAD package. The thermal land varies in size, depending on the PowerPAD package being used, the PCB construction, and the amount of heat that needs to be removed. In addition, the thermal land may or may not contain numerous thermal vias depending on PCB construction.

Other requirements for using thermal lands and thermal vias are detailed in the TI application report *PowerPAD™ Thermally Enhanced Package* (SLMA002), available via the TI web site at <u>http://www.ti.com</u>.

For the TVP5146M2 device, this thermal land must be grounded to the low-impedance ground plane of the device. This improves not only thermal performance but also the electrical grounding of the device. It is also recommended that the device ground terminal landing pads be connected directly to the grounded thermal land. The land size must be as large as possible without shorting device signal terminals. The thermal land may be soldered to the exposed thermal pad using standard reflow soldering techniques.

While the thermal land can be electrically floated and configured to remove heat to an external heat sink, it is recommended that the thermal land be connected to the low-impedance ground plane for the device. More information can be obtained from the TI application report *PHY Layout* (SLLA020).

TVP5146M2

SLES141H-JULY 2005-REVISED FEBRUARY 2012

www.ti.com

NSTRUMENTS

EXAS

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

REVISION	COMMENTS							
SLES141	Initial release							
SLES141A	Updated Section 2.8							
SLES141B	Added industrial temperature orderable and updated relevant specifications in Chapter 3							
	Updated Section 1.2							
SLES141C	Updated Section 2.11.16, Section 2.11.17							
	Updated MAX supply voltages for Industrial temperature in Recommended Operating Conditions							
	Added notes throughout Electrical Characteristics to indicate parameters specified by design or specified by characterization only							
	Updated DNL Differential nonlinearity specification and INL Integral nonlinearity							
	Updated t5 Output delay time, Industrial							
SLES141D	Updated Section 2.8							
SLES141E	Added AEC-Q100 qualification							
	Changed all instances of 10-bit video decoder to 11-bit							
	Updated register descriptions at addresses 09h, 0Ah, 0Bh							
	Added registers at addresses 11h, 12h, 14h, 26h, 27h, 2Fh							
	Changes all instances of WSS to WSS/CGMS and VPS to VPS/Gemstar							
	Changed A18GND (pin 24) and A18VDD (pin 25) to NC							
	Added Section 3.4 Thermal Specification							
	Updated Figure 5-1 Example Application Circuit							
SLES141F	Section 2.6.1, Removed statement about internal pulldown on I2CA terminal.							
	Table 2-12, Added RGB rows							
	Updated description for register at address 03h							
	Added registers at addresses 26h, 27h							
	Updated Section 3.9 Thermal Specifications							
SLES141G	Table 2-10, Added RAM version MSB and LSB registers (subaddresses: 71h, 82h)							
	Table 2-75, Added RAM version MSB register (subaddress: 71h)							
	Table 2-84, Added RAM version LSB register (subaddress: 82h)							
SLES141H	Figure 2-12, Added note concerning resistor.							
	Figure 2-14 and Figure 2-15, Changed drawings							
	Figure 2-20, Corrected typesetting error (µ was not visible in "100 µs").							
	Figure 5-1, Added pulldown resistor to C_1 pin; added note concerning ESD protection.							

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TVP5146M2IPFP	ACTIVE	HTQFP	PFP	80	96	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
TVP5146M2IPFPR	ACTIVE	HTQFP	PFP	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
TVP5146M2PFP	ACTIVE	HTQFP	PFP	80	96	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
TVP5146M2PFPR	ACTIVE	HTQFP	PFP	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

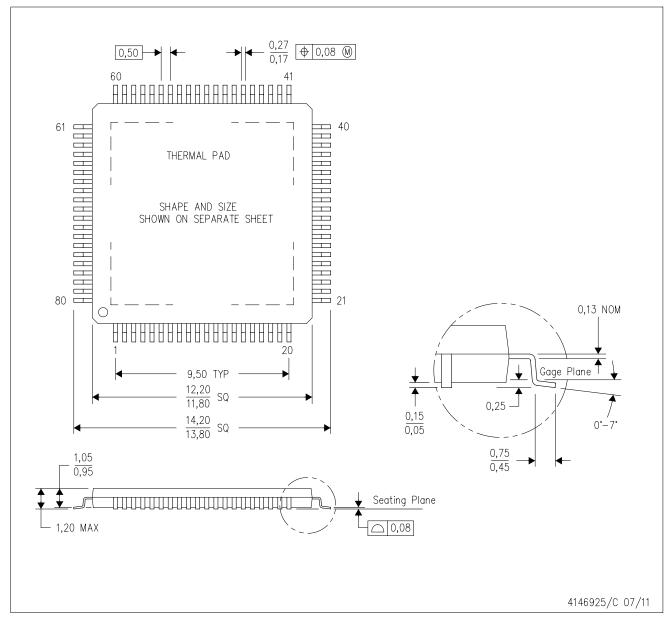
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PFP (S-PQFP-G80)

PowerPAD™ PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

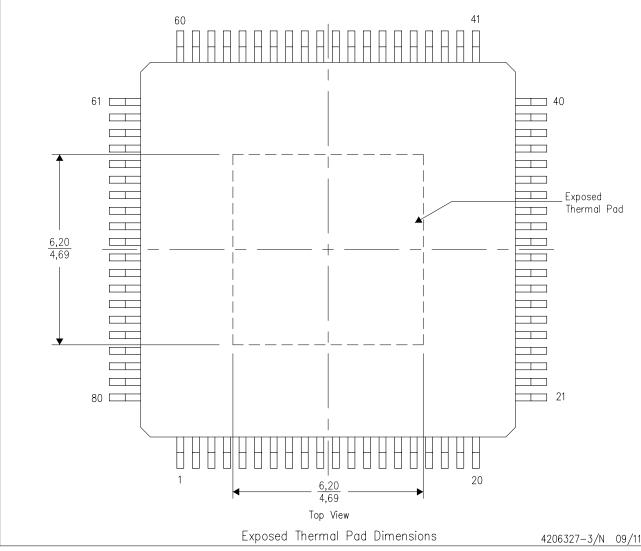
- C. Body dimensions do not include mold flash or protrusion
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

F. Falls within JEDEC MS-026

PowerPAD is a trademark of Texas Instruments.

THERMAL PAD MECHANICAL DATA

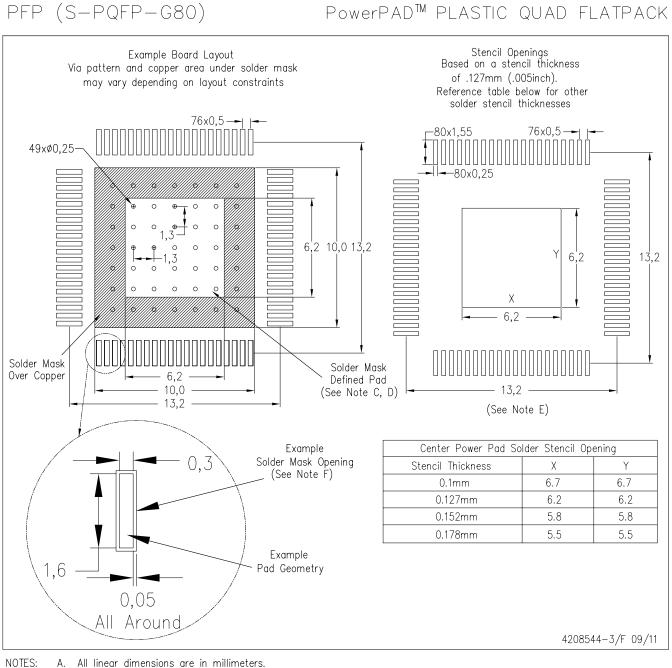
PFP (S-PQFP-G80)


PowerPAD[™] PLASTIC QUAD FLATPACK

THERMAL INFORMATION

This PowerPAD[™] package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.


The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

PowerPAD is a trademark of Texas Instruments

NOTES:

- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
	TI 505 0		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated