Distributed by:

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 983588

September 1983 Revised January 2005

FAIRCHILD

SEMICONDUCTOR

MM74HC04 Hex Inverter

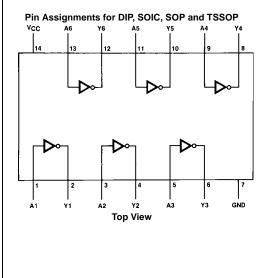
General Description

The MM74HC04 inverters utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits.

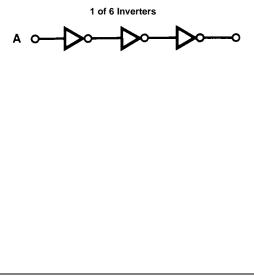
The MM74HC04 is a triple buffered inverter. It has high noise immunity and the ability to drive 10 LS-TTL loads. The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Typical propagation delay: 8 ns
- Fan out of 10 LS-TTL loads
- Quiescent power consumption: 10 µW maximum at room temperature
- Low input current: 1 µA maximum


Ordering Code:

Order Number	Package Number	Package Description				
MM74HC04M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow				
MM74HC04M_NL		Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow				
MM74HC04SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
MM74HC04MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
MM74HC04MTC_NL	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
MM74HC04N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				
MM74HC04N_NL	N14A	Pb-Free 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

© 2005 Fairchild Semiconductor Corporation DS005069

Absolute Maximum Ratings(Note 1) (Note 2)

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	–1.5 to V _{CC} +1.5V
DC Output Voltage (V _{OUT})	–0.5 to V_{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I_{CC})	±50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

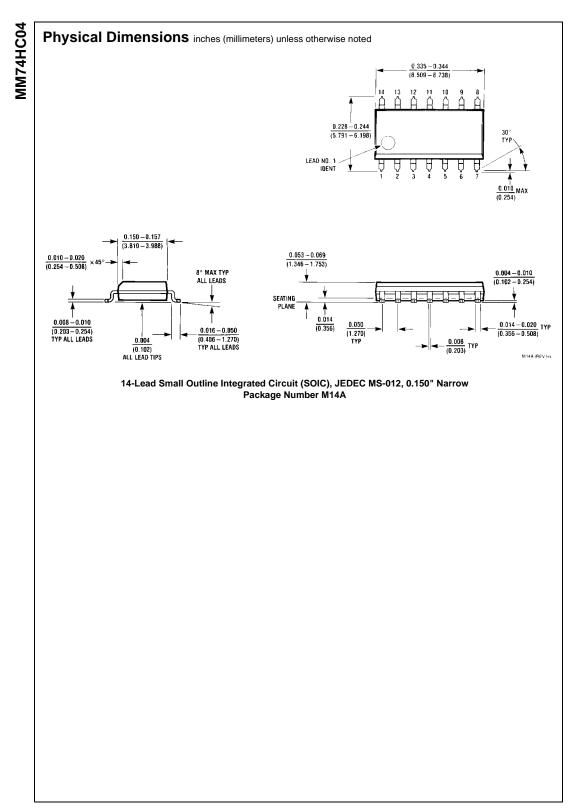
	Min	Max	Units	
Supply Voltage (V _{CC})	2	6	V	
DC Input or Output Voltage	0	V_{CC}	V	
(V _{IN} , V _{OUT})				
Operating Temperature Range (T _A)	-40	+85	°C	
Input Rise or Fall Times				
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns	
$V_{CC} = 4.5V$		500	ns	
$V_{CC} = 6.0V$		400	ns	

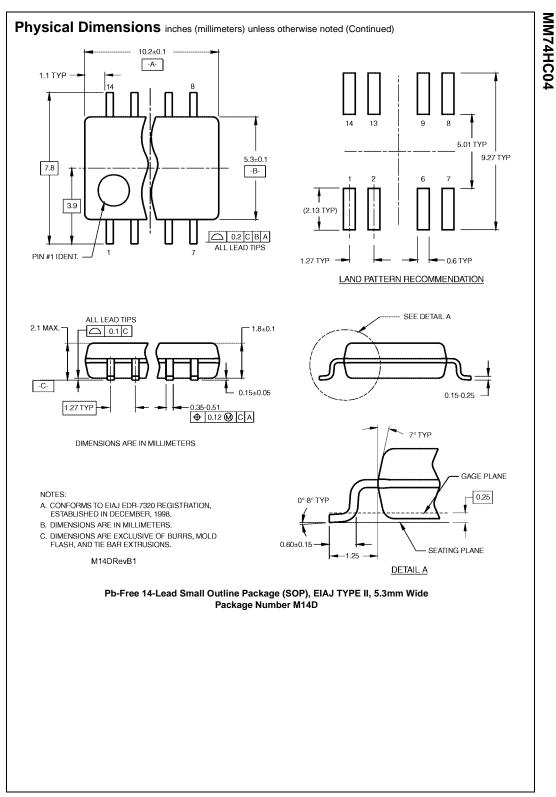
Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

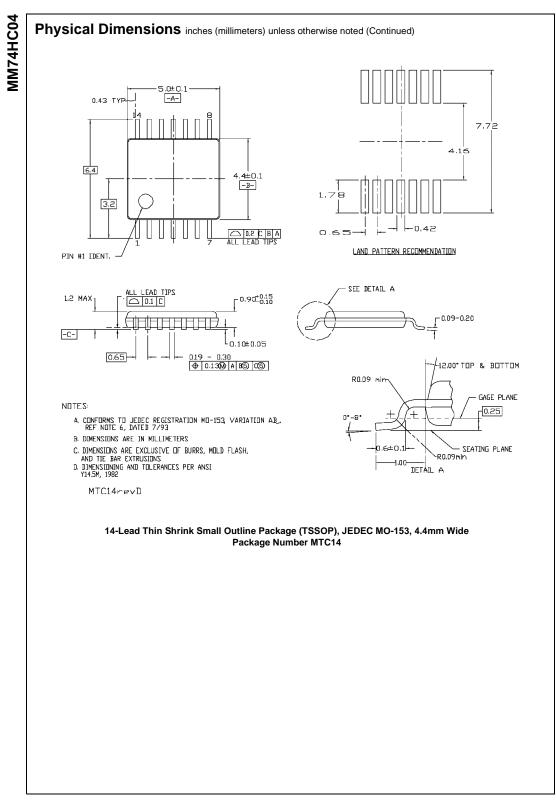
Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

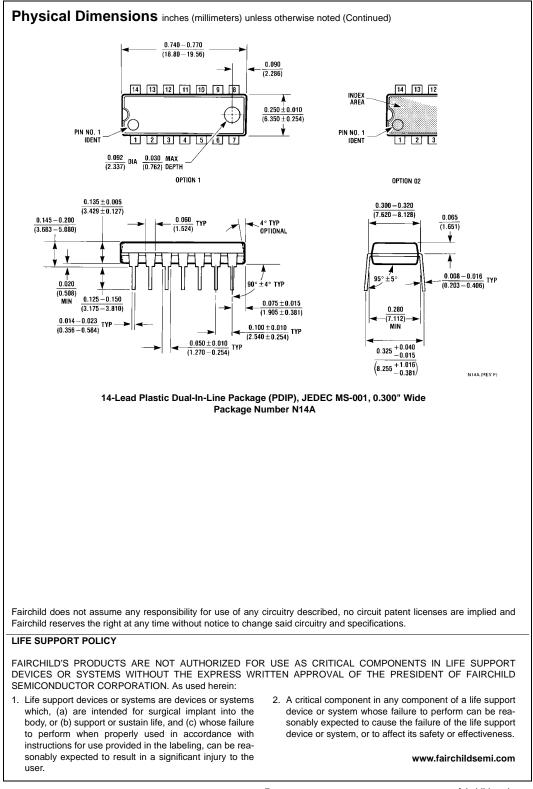
DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	Vcc	$T_A = 25^{\circ}C$		$T_A{=}{-}40$ to $85^\circ C$	$T_A=-55$ to $125^\circ C$	Units
Symbol			*cc	Тур		Guaranteed L	imits	Units
VIH	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
VIL	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IL}$						
	Output Voltage	I _{OUT} ≤ 20 μA	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IL}$						
		I _{OUT} ≤ 4.0 mA	4.5V	4.2	3.98	3.84	3.7	V
		I _{OUT} ≤ 5.2 mA	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$						
	Output Voltage	I _{OUT} ≤ 20 μA	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μA
	Current							
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		2.0	20	40	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$						


Note 4: For a power supply of 5V $\pm 10^{\circ}$ the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{O2}) occur for CMOS at the higher voltage and so the 6.0V values should be used.


Guaranteed Limit	Units
15	ns


 $V_{CC} = 2.0V$ to 6.0V, $C_L = 50$ pF, $t_r = t_f = 6$ ns (unless otherwise specified)


Symbol	Parameter	Conditions	v _{cc}	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^\circ C$	$T_A=-55$ to $125^\circ C$	Units
Symbol	Falameter		•00	Тур		Guaranteed Limits		
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	55	95	120	145	ns
	Delay		4.5V	11	19	24	29	ns
			6.0V	9	16	20	24	ns
t _{TLH} , t _{THL}	Maximum Output Rise		2.0V	30	75	95	110	ns
	and Fall Time		4.5V	8	15	19	22	ns
			6.0V	7	13	16	19	ns
C _{PD}	Power Dissipation	(per gate)		20				pF
	Capacitance (Note 5)							
CIN	Maximum Input			5	10	10	10	pF
	Capacitance							

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

MM74HC04 Hex Inverter