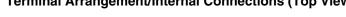
MOS FET Relays I-352C/F

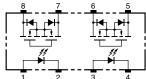
MOS FET Relay Series with 350-V Load Voltage Including Models with 2 Outputs.

- Upgraded G3VM-W Series.
- Continuous load current of 120 mA.
- Dielectric strength of 2,500 Vrms between I/O.
- RoHS Compliant.

Application Examples

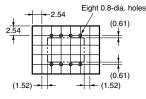
- Measurement devices
- Security systems
- Amusement machines

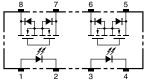

List of Models


Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
DPST-NO	PCB terminals	350 VAC	G3VM-352C	50	
	Surface-mounting		G3VM-352F		
	terminals		G3VM-352F(TR)		1,500

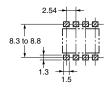
Dimensions

Note: All units are in millimeters unless otherwise indicated.





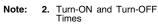
PCB Dimensions (Bottom View)

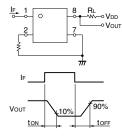

G3VM-352C

G3VM-352F

Actual Mounting Pad Dimensions (Recommended Value, Top View) G3VM-352F

OMRON

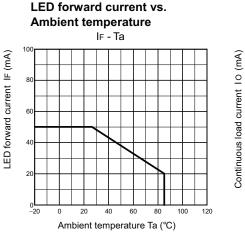

■ Absolute Maximum Ratings (Ta = 25°C)

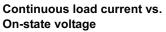

Item		Symbol	Rating	Unit	Measurement conditions	1
Input LED forward current		I _F	50	mA		Note
	Repetitive peak LED forward current	I _{FP}	1	A	100 μs pulses, 100 pps	
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	Ta ≥ 25°C	
	LED reverse voltage	V _R	5	V		
	Connection temperature	T _j	125	°C		
Output	Load voltage (AC peak/DC)	V _{OFF}	350	V		1
	Continuous load current	I _o	120	mA		
	ON current reduction rate	$\Delta I_{ON}/^{\circ}C$	-1.2	mA/°C	Ta ≥ 25°C	
	Connection temperature	T _j	125	°C		
	ric strength between input and (See note 1.)	V _{I-O}	2,500	V _{rms}	AC for 1 min	
Operati	ing temperature	T _a	-40 to +85	°C	With no icing or condensation	
Storage temperature		T _{stg}	-55 to +125	°C	With no icing or condensation	1
Soldering temperature (10 s)			260	°C	10 s	1

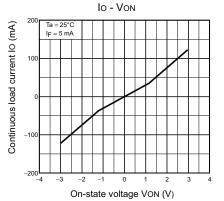
The dielectric strength between the input and output was checked by applying voltage be-tween all pins as a group on the LED side and all pins as a group on the light-receiving side.

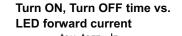
■ Electrical Characteristics (Ta = 25°C)

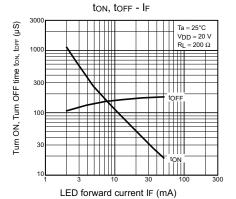
Item		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA
	Reverse current	I _R			10	μA	V _R = 5 V
	Capacity between terminals	C _T		30		pF	V = 0, f = 1 MHz
	Trigger LED forward current	I _{FT}		1	3	mA	l _o = 120 mA
Output	Maximum resistance with output ON	R _{on}		25	35	Ω	I _F = 5 mA, I _O = 120 mA, t < 1 s
				35	50	Ω	I _F = 5 mA, I _O = 120 mA
	Current leakage when the relay is open	I _{LEAK}		0.0015	1.0	μA	V _{OFF} = 350 V
	Capacity between terminals	C _{OFF}		30		pF	V = 0, f = 1MHz,
Capacity between I/O terminals		C _{I-O}		0.8		pF	f = 1 MHz, V _s = 0 V
Insulation resistance		R _{I-O}	1,000			MΩ	$\begin{array}{l} V_{\text{I-O}} = 500 \text{ VDC}, \\ R_{\text{oH}} \leq 60\% \end{array}$
Turn-ON time		t _{on}		0.3	1.0	ms	$I_{\rm F} = 5 {\rm mA}, R_{\rm L} = 200 \Omega,$
Turn-OFF time		t _{OFF}		0.1	1.0	ms	$V_{DD} = 20 V$ (See note 2.)

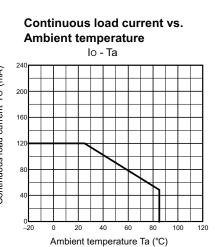

Recommended Operating Conditions


Use the G3VM under the following conditions so that the Relay will operate properly.


Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V _{DD}			280	V
Operating LED forward current	I _F	5	7.5	25	mA
Continuous load current (AC peak/DC)	I _o			100	mA
Operating temperature	T _a	- 20		65	°C


OMRON





On-state resistance vs.

Ron - Ta

Ambient temperature

IO = 120 mA

 $I_F = 5 \text{ mA}$

t < 1 s 4

On-state resistance RON (Ω)

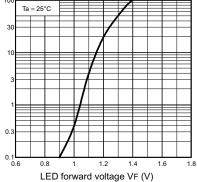
10

0 --20

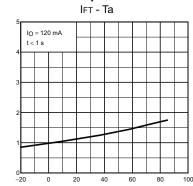
0

LED forward current vs. LED forward voltage IF - VF Ta = 25°C

(mA)

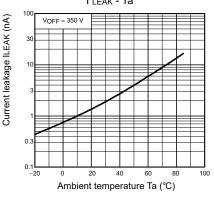

Щ

ED forward current


(mA)

ΓT

Trigger LED forward current



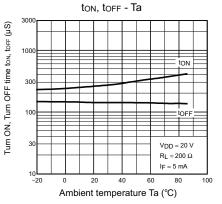
Trigger LED forward current vs. **Ambient temperature**

Ambient temperature Ta (°C)

Current leakage vs. **Ambient temperature** I _{LEAK} - Та

Turn ON, Turn OFF time vs. **Ambient temperature**

40


Ambient temperature Ta (°C)

60

80

100

20

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS. To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

55 E. Commerce Drive, Suite B Schaumburg, IL 60173

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

847-882-2288

Cat. No. X302-E-1

12/10

Specifications subject to change without notice

Printed in USA

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Omron:

G3VM-352F(TR) G3VM-352C G3VM-352F