

August 1993 Revised May 2005

74VHC541 Octal Buffer/Line Driver with 3-STATE Outputs

General Description

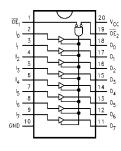
The VHC541 is an advanced high-speed CMOS device fabricated with silicon gate CMOS technology. It achieves the high-speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

The VHC541 is an octal buffer/line driver designed to be employed as memory and address drivers, clock drivers and bus oriented transmitter/receivers.

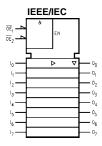
This device is similar in function to the VHC244 while providing flow-through architecture (inputs on opposite side from outputs). This pinout arrangement makes this device especially useful as an output port for microprocessors, allowing ease of layout and greater PC board density.

An input protection circuit insures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

Features


- High Speed: t_{PD} = 3.5 ns (typ) at V_{CC} = 5V
- Low power dissipation: $I_{CC} = 4 \mu A \text{ (max)}$ at $T_A = 25 \text{ °C}$
- High noise immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (min)
- Power down protection is provided on all inputs
- Low noise: V_{OLP} = 0.9V (typ)
- Pin and function compatible with 74HC541

Ordering Code:


Order Number	Package Number	Package Description
74VHC541M	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74VHC541SJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHC541MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHC541N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

Logic Symbol

Pin Descriptions

Pin Names	Descriptions
\overline{OE}_1 , \overline{OE}_2	3-STATE Output Enable Inputs
I ₀ - I ₇	Inputs
O ₀ - O ₇	3-STATE Outputs

Truth Table

	Outputs		
OE ₁	OE ₂	1	
L	L	Н	Н
Н	Χ	X	Z
X	Н	X	Z
L	L	L	L

H = HIGH Voltage Level X = Immaterial L = LOW Voltage Level Z = High Impedance

Absolute Maximum Ratings(Note 1)

 $\label{eq:supply Voltage VCC} Supply Voltage (V_{CC}) & -0.5 V to +7.0 V \\ DC Input Voltage (V_{IN}) & -0.5 V to +7.0 V \\ \end{array}$

 $\begin{array}{lll} \text{DC Output Voltage (V}_{\text{OUT}}) & -0.5\text{V to V}_{\text{CC}} + 0.5\text{V} \\ \text{Input Diode Current (I}_{\text{IK}}) & -20 \text{ mA} \\ \text{Output Diode Current (I}_{\text{OK}}) & \pm 20 \text{ mA} \\ \text{DC Output Current (I}_{\text{OUT}}) & \pm 25 \text{ mA} \\ \end{array}$

DC V $_{\rm CC}$ /GND Current (I $_{\rm CC}$) ± 75 mA Storage Temperature (T $_{\rm STG}$) $-65^{\circ}{\rm C}$ to $+150^{\circ}{\rm C}$

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 2)

Input Rise and Fall Time (t_r, t_f)

$$\begin{split} V_{CC} = 3.3 V \pm 0.3 V & 0 \sim 100 \text{ ns/V} \\ V_{CC} = 5.0 V \pm 0.5 V & 0 \sim 20 \text{ ns/V} \end{split}$$

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.

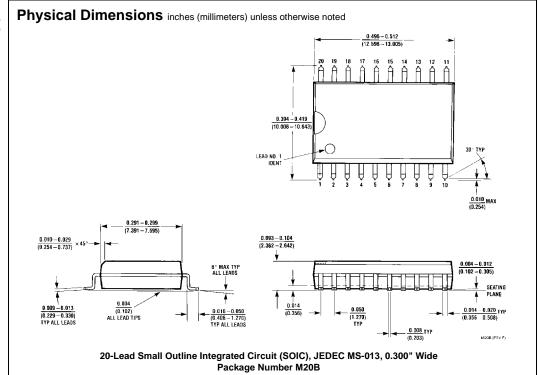
Note 2: Unused inputs must be held HIGH or LOW. They may not float

DC Electrical Characteristics

Symbol	Parameter	V _{CC} (V)	T _A = 25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Syllibol			Min	Тур	Max	Min	Max	Units	Conditions	
V _{IH}	HIGH Level Input	2.0	1.50			1.50		V		
	Voltage	3.0 – 5.5	0.7 V _{CC}			0.7 V _{CC}		ľ		
V _{IL}	LOW Level Input	2.0			0.50		0.50	V		
	Voltage	3.0 – 5.5			$0.3\mathrm{V_{CC}}$		$0.3 V_{\rm CC}$	V		
V _{OH}	HIGH Level Output	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH}$	$I_{OH} = -50 \mu A$
	Voltage	3.0	2.9	3.0		2.9		V	or V _{IL}	
		4.5	4.4	4.5		4.4				
		3.0	2.58			2.48		V		I _{OH} = -4 mA
		4.5	3.94			3.80		V		$I_{OH} = -8 \text{ mA}$
V _{OL}	LOW Level Output	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH}$	$I_{OL} = 50 \mu A$
	Voltage	3.0		0.0	0.1		0.1	V	or V _{IL}	
		4.5		0.0	0.1		0.1			
		3.0			0.36		0.44	V		I _{OL} = 4 mA
		4.5			0.36		0.44	V		$I_{OL} = 8 \text{ mA}$
l _{OZ}	3-STATE Output	5.5			±0.25		±2.5	μА	$V_{IN} = V_{IH}$ or	V _{IL}
	Off-State Current							μΑ	$V_{OUT} = V_{CC}$	or GND
I _{IN}	Input Leakage Current	0 – 5.5			±0.1		±1.0	μА	V _{IN} = 5.5V or GND	
I _{CC}	Quiescent Supply Current	5.5			4.0		40.0	μА	V _{IN} = V _{CC} or GND	

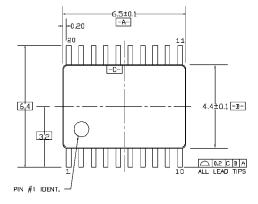
Noise Characteristics

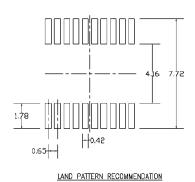
Symbol	Parameter	v _{cc}	T _A =	25°C	Units	Conditions		
Cymbol	i arameter	(V)	Тур	Limits	Omia	Contamone		
V _{OLP}	Quiet Output Maximum Dynamic	5.0	0.9	1.2	V	C _L = 50 pF		
(Note 3)	V _{OL}							
V _{OLV}	Quiet Output Minimum Dynamic	5.0	-0.8	-1.0	V	C _L = 50 pF		
(Note 3)	V _{OL}							
V_{IHD}	Minimum HIGH Level Dynamic	5.0		3.5	V	C _L = 50 pF		
(Note 3)	Input Voltage							
V _{ILD}	Maximum HIGH Level Dynamic	5.0		1.5	V	C _L = 50 pF		
(Note 3)	Input Voltage							

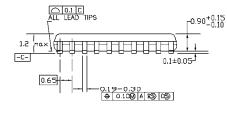

Note 3: Parameter guaranteed by design.

AC Electrical Characteristics

Symbol	Parameter	V _{CC}	T _A = 25°C			T _A = -40°0	C to +85°C	Units	Conditions	
		(V)	Min	Тур	Max	Min	Max	00		
t _{PLH}	Propagation Delay	3.3 ± 0.3		5.0	7.0	1.0	8.5	ns		$C_{L} = 15 \text{ pF}$
t_{PHL}	Time			7.5	10.5	1.0	12.0	115		$C_L = 50 pF$
		5.0 ± 0.5		3.5	5.0	1.0	6.0	ns		$C_L = 15 pF$
				5.0	7.0	1.0	8.0	115		$C_L = 50 pF$
t _{PZL}	3-STATE Output	$\textbf{3.3} \pm \textbf{0.3}$		6.8	10.5	1.0	12.5	ns	$R_L = 1 k\Omega$	C _L = 15 pF
t_{PZH}	Enable Time			9.3	14.0	1.0	16.0	- 115		C _L = 50 pF
		5.0 ± 0.5		4.7	7.2	1.0	8.5	ns		C _L = 15 pF
				6.2	9.2	1.0	10.5	115		$C_L = 50 \text{ pF}$
t _{PLZ}	3-STATE	3.3 ± 0.3		11.2	15.4	1.0	17.5		$R_L = 1 k\Omega$	C _L = 50 pF
t_{PHZ}	Output	5.0 ± 0.5		6.0	8.8	1.0	10.0	ns		$C_L = 50 \text{ pF}$
	Disable Time									
toslh	Output to Output Skew	3.3 ± 0.3			1.5		1.5	ns	(Note 4)	C _L = 50 pF
toshl		5.0 ± 0.5			1.0		1.0	- 115		$C_L = 50 pF$
C _{IN}	Input Capacitance			4	10		10	pF	V _{CC} = Ope	n
C _{OUT}	Output Capacitance			6				pF	V _{CC} = 5.0V	
C _{PD}	Power Dissipation Capacitance			18				pF	(Note 5)	


 $\textbf{Note 4:} \ \ \text{Parameter guaranteed by design.} \ \ t_{OSLH} = |t_{PLHmax} - t_{PLHmin}|; \ t_{OSHL} = |t_{PHLmax} - t_{PHLmin}|.$


Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (OPR.) = C_{PD} * V_{CC} * f_{IN} + I_{CC} /8 (per bit).



Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 12.6±0.10 0.40 TYP --A-5.3±0.10 9.27 TYP 7.8 -B-3.9 0.2 C B A ALL LEAD TIPS 10 PIN #1 IDENT.-0.6 TYP 1.27 TYP LAND PATTERN RECOMMENDATION ALL LEAD TIPS SEE DETAIL A 0.1 C 1.8±0.1 -C-L _{0.15±0.05} 0.15-0.25 -1.27 TYP 0.35-0.51 ⊕ 0.12 **(** C A DIMENSIONS ARE IN MILLIMETERS GAGE PLANE 0.25 NOTES: A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998. B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. 0.60±0.15 SEATING PLANE 1.25 -M20DRevB1 DETAIL A Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

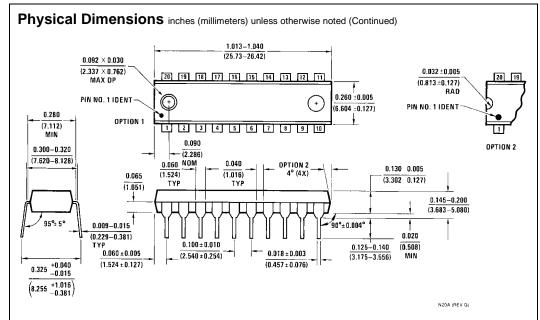
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

SEE DETAIL A

DIMENSIONS ARE IN MILLIMETERS

NOTES:

A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93.


- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

12.00° R0.09min GAGE PLANE -0.6±0.1 R0.09min

DETAIL A

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

<u>74VHC541SJX</u> <u>74VHC541MTCX</u> <u>74VHC541M</u> <u>74VHC541MX</u> <u>74VHC541MTC</u> <u>74VHC541MTC_Q</u> 74VHC541SJ_Q 74VHC541N_Q