











SN74LVC1G97

SCES416M - DECEMBER 2002-REVISED JUNE 2015

# **SN74LVC1G97 Configurable Multiple-Function Gate**

#### **Features**

- Available in the Texas Instruments NanoFree™ Package
- Supports 5-V V<sub>CC</sub> Operation
- Inputs Accept Voltages to 5.5 V
- Supports Down Translation to V<sub>CC</sub>
- Max  $t_{pd}$  of 6.3 ns at 3.3 V
- Low Power Consumption, 10-µA Max I<sub>CC</sub>
- ±24-mA Output Drive at 3.3 V
- I<sub>off</sub> Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
  - 2000-V Human Body Model (A114-A)
  - 200-V Machine Model (A115-A)
  - 1000-V Charged-Device Model (C101)
- Choose From Nine Specific Logic Functions

## **Applications**

- **Barcode Scanners**
- Cable Solutions
- E-Books
- **Embedded PCs**
- Field Transmitter: Temperature or Pressure Sensors
- Fingerprint Biometrics
- HVAC: Heating, Ventilating, and Air Conditioning
- Network-Attached Storage (NAS)
- Server Motherboards and PSUs
- Software Defined Radios (SDR)
- TVs: High Definition (HDTV), LCD, and Digital
- Video Communications Systems
- Wireless Data Access Cards, Headsets, Keyboard, Mouse, and LAN Cards

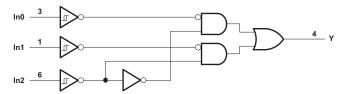
### 3 Description

The SN74LVC1G97 device features configurable multiple functions. The output state is determined by eight patterns of 3-bit input. The user can choose the logic functions MUX, AND, OR, NAND, NOR, inverter, and noninverter. All inputs can be connected to V<sub>CC</sub> or GND.

This configurable multiple-function gate is designed for 1.65-V to 5.5-V  $V_{CC}$  operation.

This device functions as an independent gate, but because of Schmitt action, it may have different input threshold levels for positive-going (V<sub>T</sub>+) and negativegoing  $(V_T)$  signals.

NanoFree package technology is a major breakthrough in IC packaging concepts, using the die as the package.


This device is fully specified for partial-power-down applications using  $I_{\text{off}}$ . The  $I_{\text{off}}$  circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

### Device Information<sup>(1)</sup>

| PART NUMBER    | PACKAGE    | BODY SIZE (NOM)   |
|----------------|------------|-------------------|
| SN74LVC1G97DBV | SOT-23 (6) | 2.9 mm × 1.6 mm   |
| SN74LVC1G97DCK | SC70 (6)   | 2.0 mm × 1.25 mm  |
| SN74LVC1G97DRL |            | 1.6 mm × 1.2 mm   |
| SN74LVC1G97DSF | SOT (6)    | 1.45 mm × 1.0 mm  |
| SN74LVC1G97DRY |            | 1.0 mm × 1.0 mm   |
| SN74LVC1G97YZP | DSBGA (6)  | 1.41 mm × 0.91 mm |

(1) For all available packages, see the orderable addendum at the end of the data sheet.

#### Logic Diagram (Positive Logic)







#### **Table of Contents**

| 1 | Features 1                           |    | 8.1 Overview                                     |    |
|---|--------------------------------------|----|--------------------------------------------------|----|
| 2 | Applications 1                       |    | 8.2 Functional Block Diagram                     | 8  |
| 3 | Description 1                        |    | 8.3 Feature Description                          | 8  |
| 4 | Revision History2                    |    | 8.4 Device Functional Modes                      | 8  |
| 5 | Pin Configuration and Functions      | 9  | Application and Implementation                   | 1′ |
| 6 | Specifications4                      |    | 9.1 Application Information                      |    |
| • | 6.1 Absolute Maximum Ratings         |    | 9.2 Typical Application                          | 1° |
|   | 6.2 ESD Ratings                      | 10 | Power Supply Recommendations                     | 12 |
|   | 6.3 Recommended Operating Conditions | 11 | Layout                                           | 13 |
|   | 6.4 Thermal Information              |    | 11.1 Layout Guidelines                           | 13 |
|   | 6.5 Electrical Characteristics       |    | 11.2 Layout Example                              | 13 |
|   | 6.6 Switching Characteristics        | 12 | Device and Documentation Support                 | 14 |
|   | 6.7 Switching Characteristics        |    | 12.1 Documentation Support                       | 14 |
|   | 6.8 Operating Characteristics        |    | 12.2 Community Resources                         | 14 |
|   | 6.9 Typical Characteristics 6        |    | 12.3 Trademarks                                  | 14 |
| 7 | Parameter Measurement Information 7  |    | 12.4 Electrostatic Discharge Caution             | 14 |
| 8 | Detailed Description 8               | 13 | Mechanical, Packaging, and Orderable Information | 14 |

## 4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

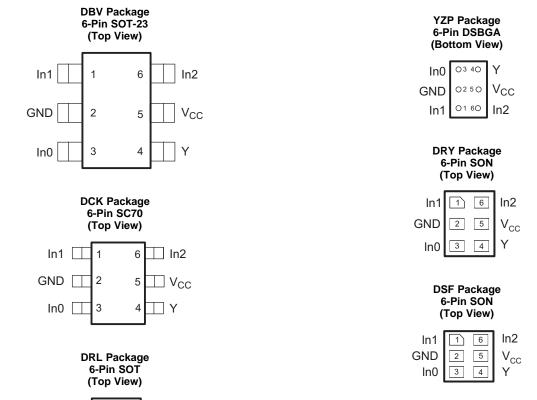
#### Changes from Revision L (December 2013) to Revision M

**Page** 

# Changes from Revision K (October 2011) to Revision L

Page

Updated document to new TI data sheet format.
 Removed Ordering Information table.
 Updated I<sub>off</sub> in Features
 Updated operating temperature range.


Submit Documentation Feedback



# 5 Pin Configuration and Functions

In1 ☐ 1

GND ☐ 2 In0 ☐ 3 6 ☐ In2 5 ☐ V<sub>CC</sub>



#### **Pin Functions**

|          | PIN                |       | DESCRIPTION |  |  |  |  |
|----------|--------------------|-------|-------------|--|--|--|--|
| NAME     | DCT, DCU, DRY, YZP | · I/O | DESCRIPTION |  |  |  |  |
| In0      | 3                  | I     | Input 0     |  |  |  |  |
| ln1      | 1                  | 1     | Input 1     |  |  |  |  |
| ln2      | 6                  | I     | Input 2     |  |  |  |  |
| GND      | 2                  | _     | Ground      |  |  |  |  |
| $V_{CC}$ | 5                  | _     | Power       |  |  |  |  |
| Υ        | 4                  | 0     | Output      |  |  |  |  |



## 6 Specifications

#### 6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                  |                                                                            |                      | MIN                   | MAX | UNIT |
|------------------|----------------------------------------------------------------------------|----------------------|-----------------------|-----|------|
| $V_{CC}$         | Supply voltage                                                             |                      | -0.5                  | 6.5 | ٧    |
| VI               | Input voltage <sup>(2)</sup>                                               |                      | -0.5                  | 6.5 | ٧    |
| Vo               | Voltage applied to any output in the high-impedance or power-off state (2) | -0.5                 | 6.5                   | ٧   |      |
| Vo               | Voltage applied to any output in the high or low state (2)(3)              | -0.5                 | V <sub>CC</sub> + 0.5 | V   |      |
| I <sub>IK</sub>  | Input clamp current                                                        | V <sub>I</sub> < 0 V |                       | -50 | mA   |
| I <sub>OK</sub>  | Output clamp current                                                       | V <sub>O</sub> < 0 V |                       | -50 | mA   |
| Io               | Continuous output current                                                  |                      |                       | ±50 | mA   |
|                  | Continuous current through V <sub>CC</sub> or GND                          |                      | ±100                  | mA  |      |
| T <sub>stg</sub> | Storage temperature                                                        |                      | -65                   | 150 | °C   |

<sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

#### 6.2 ESD Ratings

|                    |               |                                                                               | VALUE | UNIT |
|--------------------|---------------|-------------------------------------------------------------------------------|-------|------|
| V                  | Electrostatic | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)              | ±2000 | \/   |
| V <sub>(ESD)</sub> | discharge     | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) | ±1000 | V    |

<sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

# 6.3 Recommended Operating Conditions

See (1)

|                 |                                |                          | MIN  | MAX             | UNIT |  |
|-----------------|--------------------------------|--------------------------|------|-----------------|------|--|
|                 |                                | Operating                | 1.65 | 5.5             |      |  |
| $V_{CC}$        | Supply voltage                 | Data retention only      | 1.5  |                 | V    |  |
| VI              | Input voltage                  |                          | 0    | 5.5             | V    |  |
| Vo              | Output voltage                 |                          | 0    | V <sub>CC</sub> | V    |  |
|                 |                                | V <sub>CC</sub> = 1.65 V |      | -4              |      |  |
|                 | High-level output current      | $V_{CC} = 2.3 \text{ V}$ |      | -8              | mA   |  |
| I <sub>OH</sub> |                                | V 2V                     |      | -16             |      |  |
|                 |                                | V <sub>CC</sub> = 3 V    |      | -24             |      |  |
|                 |                                | V <sub>CC</sub> = 4.5 V  |      | -32             |      |  |
|                 |                                | V <sub>CC</sub> = 1.65 V |      | 4               |      |  |
|                 |                                | $V_{CC} = 2.3 \text{ V}$ |      | 8               | mA   |  |
| I <sub>OL</sub> | Low-level output current       | V 2V                     |      | 16              |      |  |
|                 |                                | V <sub>CC</sub> = 3 V    |      | 24              |      |  |
|                 |                                | V <sub>CC</sub> = 4.5 V  |      | 32              |      |  |
| T <sub>A</sub>  | Operating free-air temperature |                          | -40  | 125             | °C   |  |

All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

<sup>(2)</sup> The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

<sup>(3)</sup> The value of V<sub>CC</sub> is provided in the *Recommended Operating Conditions* table.

<sup>(2)</sup> JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



#### 6.4 Thermal Information

|                               |                                        | SN74LVC1G97  |            |           |             |      |  |  |
|-------------------------------|----------------------------------------|--------------|------------|-----------|-------------|------|--|--|
| THERMAL METRIC <sup>(1)</sup> |                                        | DBV (SOT-23) | DCK (SC70) | DRL (SOT) | YZP (DSBGA) | UNIT |  |  |
|                               |                                        | 6 PINS       | 6 PINS     | 6 PINS    | 6 PINS      |      |  |  |
| $R_{\theta JA}$               | Junction-to-ambient thermal resistance | 165          | 259        | 142       | 123         | °C/W |  |  |

<sup>(1)</sup> For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

## 6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

|                                                  |                                                                | .,              | –40°C          | TO 85°C                | -40°C          | TO 125°C               | LINUT |
|--------------------------------------------------|----------------------------------------------------------------|-----------------|----------------|------------------------|----------------|------------------------|-------|
| PARAMETER                                        | TEST CONDITIONS                                                | V <sub>cc</sub> | MIN            | TYP <sup>(1)</sup> MAX | MIN            | TYP <sup>(1)</sup> MAX | UNIT  |
|                                                  |                                                                | 1.65 V          | 0.79           | 1.16                   | 0.79           | 1.16                   |       |
| $V_{T+}$                                         |                                                                | 2.3 V           | 1.11           | 1.56                   | 1.11           | 1.56                   |       |
| Positive-going input                             |                                                                | 3 V             | 1.5            | 1.87                   | 1.5            | 1.87                   | V     |
| threshold voltage                                |                                                                | 4.5 V           | 2.16           | 2.74                   | 2.16           | 2.74                   |       |
|                                                  |                                                                | 5.5 V           | 2.61           | 3.33                   | 2.61           | 3.33                   |       |
|                                                  |                                                                | 1.65 V          | 0.35           | 0.62                   | 0.35           | 0.62                   |       |
| $V_{T-}$                                         |                                                                | 2.3 V           | 0.58           | 0.87                   | 0.58           | 0.87                   |       |
| Negative-going input                             |                                                                | 3 V             | 0.84           | 1.19                   | 0.84           | 1.19                   | V     |
| threshold voltage                                |                                                                | 4.5 V           | 1.41           | 1.9                    | 1.41           | 1.9                    |       |
|                                                  |                                                                | 5.5 V           | 1.87           | 2.29                   | 1.87           | 2.29                   |       |
|                                                  |                                                                | 1.65 V          | 0.3            | 0.62                   | 0.3            | 0.62                   |       |
|                                                  |                                                                | 2.3 V           | 0.4            | 0.8                    | 0.4            | 0.8                    | ٧     |
| $\Delta V_T$<br>Hysteresis ( $V_{T+} - V_{T-}$ ) |                                                                | 3 V             | 0.53           | 0.87                   | 0.53           | 0.87                   |       |
| , (.  + .  -)                                    |                                                                | 4.5 V           | 0.71           | 1.04                   | 0.71           | 1.04                   |       |
|                                                  |                                                                | 5.5 V           | 0.71           | 1.11                   | 0.71           | 1.11                   |       |
|                                                  | $I_{OH} = -100 \ \mu A$                                        | 1.65 V to 5.5 V | $V_{CC} - 0.1$ |                        | $V_{CC} - 0.1$ |                        | V     |
|                                                  | $I_{OH} = -4 \text{ mA}$                                       | 1.65 V          | 1.2            |                        | 1.2            |                        |       |
| $V_{OH}$                                         | $I_{OH} = -8 \text{ mA}$                                       | 2.3 V           | 1.9            |                        | 1.9            |                        |       |
| VOH                                              | I <sub>OH</sub> = −16 mA                                       | 3 V             | 2.4            |                        | 2.4            |                        | V     |
|                                                  | $I_{OH} = -24 \text{ mA}$                                      | 3 V             | 2.3            |                        | 2.3            |                        |       |
|                                                  | $I_{OH} = -32 \text{ mA}$                                      | 4.5 V           | 3.8            |                        | 3.8            |                        |       |
|                                                  | I <sub>OL</sub> = 100 μA                                       | 1.65 V to 5.5 V |                | 0.1                    |                | 0.1                    |       |
|                                                  | I <sub>OL</sub> = 4 mA                                         | 1.65 V          |                | 0.45                   |                | 0.45                   |       |
| V <sub>OL</sub>                                  | I <sub>OL</sub> = 8 mA                                         | 2.3 V           |                | 0.3                    |                | 0.3                    | V     |
| VOL                                              | I <sub>OL</sub> = 16 mA                                        | 3 V             |                | 0.4                    |                | 0.45                   | V     |
|                                                  | I <sub>OL</sub> = 24 mA                                        | 3 V             |                | 0.55                   |                | 0.55                   |       |
|                                                  | I <sub>OL</sub> = 32 mA                                        | 4.5 V           |                | 0.55                   |                | 0.58                   |       |
| I <sub>I</sub>                                   | V <sub>I</sub> = 5.5 V or GND                                  | 0 to 5.5 V      |                | ±5                     |                | ±5                     | μΑ    |
| l <sub>off</sub>                                 | $V_I$ or $V_O = 5.5 \text{ V}$                                 | 0               |                | ±10                    |                | ±10                    | μΑ    |
| I <sub>CC</sub>                                  | $V_I = 5.5 \text{ V or GND}, I_O = 0$                          | 1.65 V to 5.5 V |                | 10                     |                | 10                     | μΑ    |
| ΔI <sub>CC</sub>                                 | One input at $V_{CC}$ – 0.6 V, Other inputs at $V_{CC}$ or GND | 3 V to 5.5 V    |                | 500                    |                | 500                    | μΑ    |
| C <sub>I</sub>                                   | $V_I = V_{CC}$ or GND                                          | 3.3 V           |                | 3.5                    |                | 3.5                    | pF    |

<sup>(1)</sup> All typical values are at  $V_{CC}$  = 3.3 V,  $T_A$  = 25°C.



## 6.6 Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

|                 |                 | , ,            |                         |      | -                      | -40°C T | O 85°C                 |     |                        |     |      |
|-----------------|-----------------|----------------|-------------------------|------|------------------------|---------|------------------------|-----|------------------------|-----|------|
| PARAMETER       | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> = ± 0.1 |      | V <sub>CC</sub> = ± 0. |         | V <sub>CC</sub> = ± 0. |     | V <sub>CC</sub> = ± 0. |     | UNIT |
|                 |                 |                | MIN                     | MAX  | MIN                    | MAX     | MIN                    | MAX | MIN                    | MAX |      |
| t <sub>pd</sub> | Any In          | Y              | 3.2                     | 14.4 | 2                      | 8.3     | 1.5                    | 6.3 | 1.1                    | 5.1 | ns   |

### 6.7 Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

| PARAMETER |           |                 |                |                         | -    | 40°C T                  | O 125°C | :                       |     |                        |     |      |
|-----------|-----------|-----------------|----------------|-------------------------|------|-------------------------|---------|-------------------------|-----|------------------------|-----|------|
|           | PARAMETER | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> = ± 0.1 |      | V <sub>CC</sub> = ± 0.: |         | V <sub>CC</sub> = ± 0.3 |     | V <sub>CC</sub> = ± 0. |     | UNIT |
|           |           |                 |                | MIN                     | MAX  | MIN                     | MAX     | MIN                     | MAX | MIN                    | MAX |      |
| t         | pd        | Any In          | Υ              | 3.2                     | 16.4 | 2                       | 9.3     | 1.5                     | 7.3 | 1.1                    | 6.1 | ns   |

# 6.8 Operating Characteristics

 $T_A = 25^{\circ}C$ 

| PARAMETER TEST V <sub>CC</sub> =              |           | V <sub>CC</sub> = 1.8 V | V <sub>CC</sub> = 2.5 V | V <sub>CC</sub> = 3.3 V | V <sub>CC</sub> = 5 V | UNIT |      |  |
|-----------------------------------------------|-----------|-------------------------|-------------------------|-------------------------|-----------------------|------|------|--|
|                                               | FANAMETER | CONDITIONS              | TYP                     | TYP                     | TYP                   | TYP  | UNIT |  |
| C <sub>pd</sub> Power dissipation capacitance |           | f = 10 MHz              | 22                      | 23                      | 23                    | 26   | pF   |  |

# 6.9 Typical Characteristics

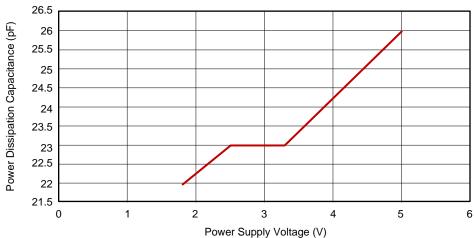
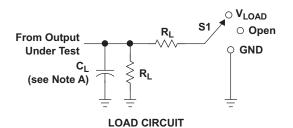
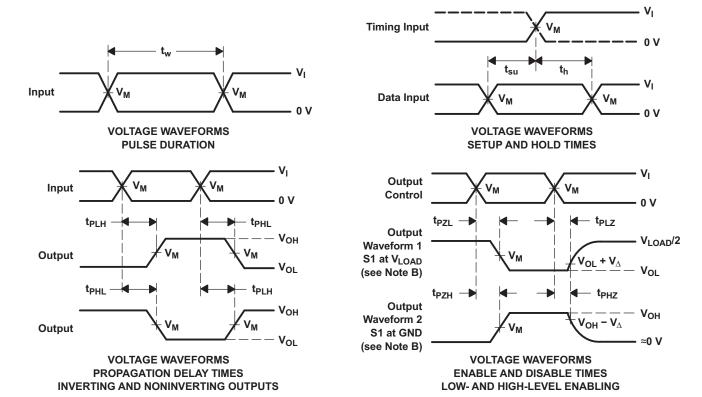




Figure 1. Power Dissipation Capacitance vs Power Supply Voltage

Submit Documentation Feedback




#### 7 Parameter Measurement Information



| TEST                               | S1                |  |  |  |
|------------------------------------|-------------------|--|--|--|
| t <sub>PLH</sub> /t <sub>PHL</sub> | Open              |  |  |  |
| t <sub>PLZ</sub> /t <sub>PZL</sub> | V <sub>LOAD</sub> |  |  |  |
| t <sub>PHZ</sub> /t <sub>PZH</sub> | GND               |  |  |  |

| · ·             | INF             | PUTS                           | V                  | .,                  | •     | _              |                         |  |
|-----------------|-----------------|--------------------------------|--------------------|---------------------|-------|----------------|-------------------------|--|
| V <sub>CC</sub> | VI              | t <sub>r</sub> /t <sub>f</sub> | V <sub>M</sub>     | $V_{LOAD}$          | CL    | R <sub>L</sub> | $oldsymbol{V}_{\Delta}$ |  |
| 1.8 V ± 0.15 V  | V <sub>CC</sub> | ≤2 ns                          | V <sub>CC</sub> /2 | 2 × V <sub>CC</sub> | 30 pF | <b>1 k</b> Ω   | 0.15 V                  |  |
| 2.5 V ± 0.2 V   | V <sub>CC</sub> | ≤2 ns                          | V <sub>CC</sub> /2 | 2 × V <sub>CC</sub> | 30 pF | <b>500</b> Ω   | 0.15 V                  |  |
| 3.3 V ± 0.3 V   | 3 V             | ≤2.5 ns                        | 1.5 V              | 6 V                 | 50 pF | <b>500</b> Ω   | 0.3 V                   |  |
| 5 V ± 0.5 V     | V <sub>CC</sub> | ≤2.5 ns                        | V <sub>CC</sub> /2 | 2 × V <sub>CC</sub> | 50 pF | <b>500</b> Ω   | 0.3 V                   |  |



NOTES: A. C<sub>L</sub> includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR $\leq$  10 MHz,  $Z_0$  = 50 W.
- D. The outputs are measured one at a time, with one transition per measurement.
- E.  $t_{PLZ}$  and  $t_{PHZ}$  are the same as  $t_{dis}$ .
- F.  $t_{PZL}$  and  $t_{PZH}$  are the same as  $t_{en}$
- G.  $t_{PLH}$  and  $t_{PHL}$  are the same as  $t_{pd}$
- H. All parameters and waveforms are not applicable to all devices.

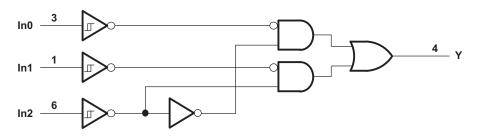
Figure 2. Load Circuit and Voltage Waveforms

Submit Documentation Feedback



## 8 Detailed Description

#### 8.1 Overview


This configurable multiple-function gate is designed for 1.65-V to 5.5-V  $V_{CC}$  operation.

The SN74LVC1G97 device features configurable multiple functions. The output state is determined by eight patterns of 3-bit input. The user can choose variations of common logic functions, like AND, OR, and NOT. All inputs can be connected to  $V_{\rm CC}$  or GND.

This device functions as an independent gate, but because of Schmitt action, it may have different input threshold levels for positive-going  $(V_{T_{-}})$  and negative-going  $(V_{T_{-}})$  signals.

This device is fully-specified for partial-power-down applications using I<sub>off</sub>. The I<sub>off</sub> circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

### 8.2 Functional Block Diagram



#### 8.3 Feature Description

The SN74LVC1G97 device has a wide operating  $V_{CC}$  range of 1.65 V to 5.5 V, which allows use in a broad range of systems. The 5.5-V I/Os allow down translation and also allow voltages at the inputs when  $V_{CC} = 0$  V.

#### 8.4 Device Functional Modes

**Table 1. Function Table** 

|     | INPUTS | OUTPUT |   |
|-----|--------|--------|---|
| ln2 | ln1    | In0    | Y |
| L   | L      | L      | L |
| L   | L      | Н      | L |
| L   | Н      | L      | Н |
| L   | Н      | Н      | Н |
| Н   | L      | L      | L |
| Н   | L      | Н      | Н |
| Н   | Н      | L      | L |
| Н   | Н      | Н      | Н |

Product Folder Links: SN74LVC1G97

DOMIN DOCUMENTATION FEEDBACK



**Table 2. Function Selection Table** 

| LOGIC FUNCTION                            | FIGURE NUMBER |
|-------------------------------------------|---------------|
| 2-to-1 data selector                      | Figure 3      |
| 2-input AND gate                          | Figure 4      |
| 2-input OR gate with one inverted input   | Figure 5      |
| 2-input NAND gate with one inverted input | Figure 5      |
| 2-input AND gate with one inverted input  | Figure 6      |
| 2-input NOR gate with one inverted input  | Figure 6      |
| 2-input OR gate                           | Figure 7      |
| Inverter                                  | Figure 8      |
| Noninverted buffer                        | Figure 9      |

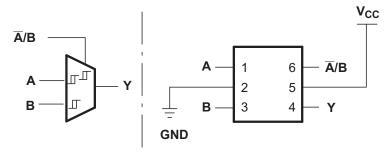



Figure 3. 2-to-1 Data Selector

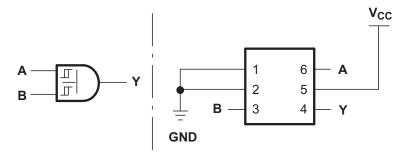



Figure 4. 2-Input AND Gate

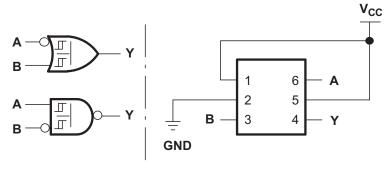



Figure 5. 2-Input OR Gate With One Inverted Input 2-Input NAND Gate With One Inverted Input

Copyright © 2002–2015, Texas Instruments Incorporated



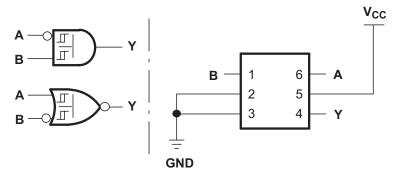



Figure 6. 2-Input AND Gate With One Inverted Input 2-Input NOR Gate With One Inverted Input

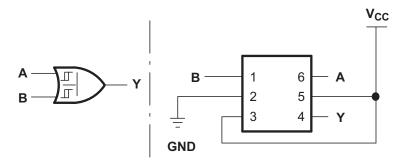



Figure 7. 2-Input OR Gate

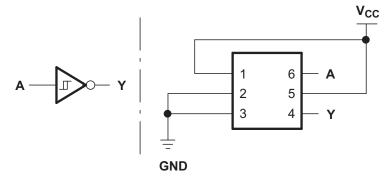



Figure 8. Inverter

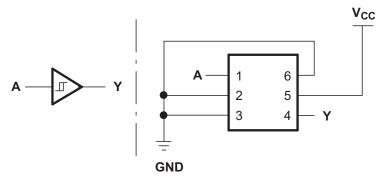



Figure 9. Noninverted Buffer

Submit Documentation Feedback



# 9 Application and Implementation

#### NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Validate and test the design implementation to confirm system functionality.

### 9.1 Application Information

The SN74LVC1G97 device offers flexible configuration for many design applications. This example describes basic power sequencing using the AND gate configuration. Power sequencing is often used in applications that require a processor or other delicate device with specific voltage timing requirements in order to protect the device from malfunctioning.

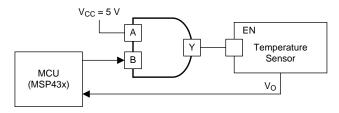



Figure 10. Simplified Application

## 9.2 Typical Application

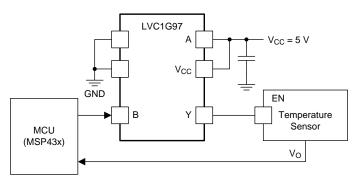



Figure 11. Typical Application

### 9.2.1 Design Requirements

- Recommended input conditions:
  - For rise time and fall time specifications, see  $\Delta t/\Delta v$  in the Recommended Operating Conditions table.
  - For specified high and low levels, see V<sub>IH</sub> and V<sub>II</sub> in the *Recommended Operating Conditions* table.
  - Inputs and outputs are overvoltage tolerant and can therefore go as high as 5.5 V at any valid V<sub>CC</sub>.
- · Recommended output conditions:
  - Load currents must not exceed ±50 mA.
- Frequency selection criterion:
  - Figure 12 illustrates the effects of frequency on output current.
  - Added trace resistance and capacitance can reduce maximum frequency capability. Follow the layout practices listed in the *Layout* section.



## **Typical Application (continued)**

#### 9.2.2 Detailed Design Procedure

The SN74LVC1G97 device uses CMOS technology and has balanced output drive. Avoid bus contentions that can drive currents that can exceed maximum limits.

The SN74LVC1G97 allows for performing logical Boolean functions with digital signals. Maintain input signals as close as possible to either 0 V or  $V_{CC}$  for optimal operation.

#### 9.2.3 Application Curve

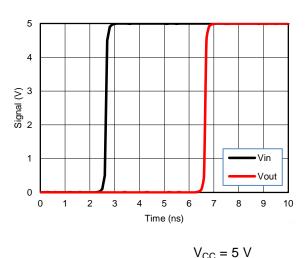



Figure 12. Simulated Input-to-Output Voltage Response Showing Propagation Delay

# 10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating listed in the *Recommended Operating Conditions* table.

To prevent power disturbance, ensure good bypass capacitance for each  $V_{CC}$  terminal. For devices with a single-supply, a 0.1- $\mu$ F bypass capacitor is recommended. If multiple pins are labeled  $V_{CC}$ , then a 0.01- $\mu$ F or 0.022- $\mu$ F capacitor is recommended for each  $V_{CC}$  because the  $V_{CC}$  pins are tied together internally. For devices with dual supply pins operating at different voltages, for example  $V_{CC}$  and  $V_{DD}$ , a 0.1- $\mu$ F bypass capacitor is recommended for each supply pin. To reject different frequencies of noise, use multiple bypass capacitors in parallel. Capacitors with values of 0.1  $\mu$ F and 1  $\mu$ F are commonly used in parallel. Place the bypass capacitor as close to the power terminal as possible for best results.

Submit Documentation Feedback



## 11 Layout

### 11.1 Layout Guidelines

When using multiple-bit logic devices, inputs must never float.

In many cases, functions (or parts of functions) of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or when only 3 of the 4 buffer gates are used. Such input pins must not be left unconnected, because the undefined voltages at the outside connections result in undefined operational states. Figure 13 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally they are tied to GND or  $V_{\rm CC}$ , whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output enable pin, it disables the output section of the part when asserted, which does not disable the input section of the I/Os. Therefore, the I/Os cannot float when disabled.

#### 11.2 Layout Example

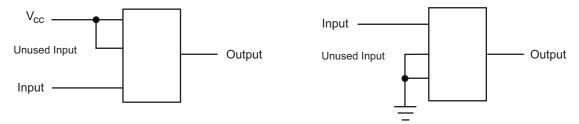



Figure 13. Layout Diagrams



## 12 Device and Documentation Support

#### 12.1 Documentation Support

#### 12.1.1 Related Documentation

For related documentation see the following:

- Implications of Slow or Floating CMOS Inputs, SCBA004
- Selecting the Right Texas Instruments Signal Switch, SZZA030

### 12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community T's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

**Design Support** *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

#### 12.3 Trademarks

NanoFree, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

#### 12.4 Electrostatic Discharge Caution



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

# 13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.





12-May-2015

#### **PACKAGING INFORMATION**

| Orderable Device  | Status | Package Type | _       | Pins | _    | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Device Marking             | Samples |
|-------------------|--------|--------------|---------|------|------|----------------------------|------------------|--------------------|--------------|----------------------------|---------|
|                   | (1)    |              | Drawing |      | Qty  | (2)                        | (6)              | (3)                |              | (4/5)                      |         |
| SN74LVC1G97DBVR   | ACTIVE | SOT-23       | DBV     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | (C975 ~ C97K ~<br>C97R)    | Samples |
| SN74LVC1G97DBVRE4 | ACTIVE | SOT-23       | DBV     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | (C975 ~ C97K ~<br>C97R)    | Samples |
| SN74LVC1G97DBVRG4 | ACTIVE | SOT-23       | DBV     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | (C975 ~ C97K ~<br>C97R)    | Samples |
| SN74LVC1G97DBVT   | ACTIVE | SOT-23       | DBV     | 6    | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | (C975 ~ C97K ~<br>C97R)    | Samples |
| SN74LVC1G97DBVTG4 | ACTIVE | SOT-23       | DBV     | 6    | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | (C975 ~ C97K ~<br>C97R)    | Samples |
| SN74LVC1G97DCKR   | ACTIVE | SC70         | DCK     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | (CS5 ~ CSF ~ CSK ~<br>CSR) | Samples |
| SN74LVC1G97DCKRE4 | ACTIVE | SC70         | DCK     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | (CS5 ~ CSF ~ CSK ~<br>CSR) | Samples |
| SN74LVC1G97DCKRG4 | ACTIVE | SC70         | DCK     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | (CS5 ~ CSF ~ CSK ~<br>CSR) | Samples |
| SN74LVC1G97DCKT   | ACTIVE | SC70         | DCK     | 6    | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | (CS5 ~ CSF ~ CSK ~<br>CSR) | Samples |
| SN74LVC1G97DCKTG4 | ACTIVE | SC70         | DCK     | 6    | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | (CS5 ~ CSF ~ CSK ~<br>CSR) | Samples |
| SN74LVC1G97DRLR   | ACTIVE | SOT          | DRL     | 6    | 4000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | (CS7 ~ CSR)                | Samples |
| SN74LVC1G97DRLRG4 | ACTIVE | SOT          | DRL     | 6    | 4000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | (CS7 ~ CSR)                | Samples |
| SN74LVC1G97DRYR   | ACTIVE | SON          | DRY     | 6    | 5000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | CS                         | Samples |
| SN74LVC1G97DSFR   | ACTIVE | SON          | DSF     | 6    | 5000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | CS                         | Samples |
| SN74LVC1G97YZPR   | ACTIVE | DSBGA        | YZP     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | SNAGCU           | Level-1-260C-UNLIM | -40 to 85    | (CS7 ~ CSN)                | Samples |

<sup>(1)</sup> The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

**LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

# PACKAGE OPTION ADDENDUM



12-May-2015

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component has a Roh5 exemption for eitner 1) lead-based filip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RohS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF SN74LVC1G97:

Automotive: SN74LVC1G97-Q1

Enhanced Product: SN74LVC1G97-EP

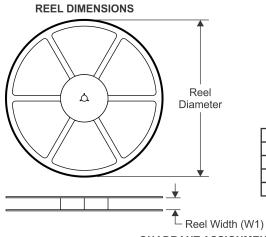
NOTE: Qualified Version Definitions:

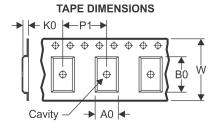
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects



www.ti.com

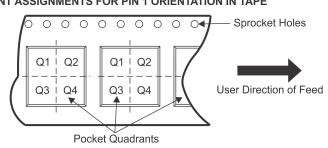
# **PACKAGE OPTION ADDENDUM**


12-May-2015


• Enhanced Product - Supports Defense, Aerospace and Medical Applications

# **PACKAGE MATERIALS INFORMATION**

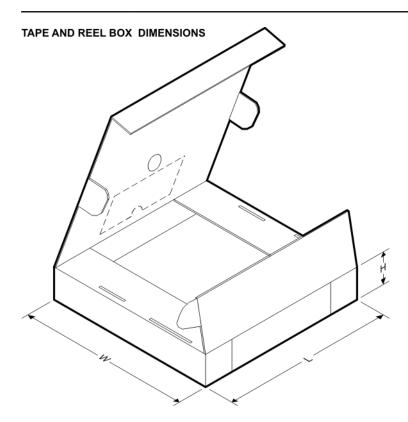
www.ti.com 12-May-2015


# TAPE AND REEL INFORMATION





|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
|    | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

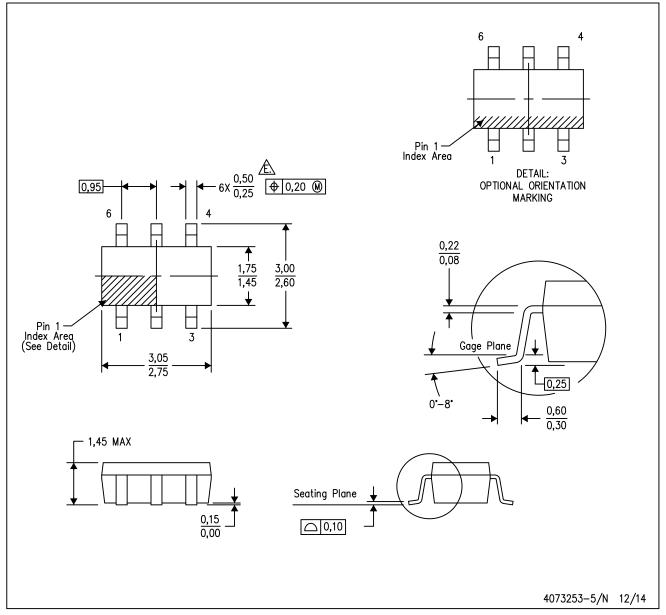

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



\*All dimensions are nominal

| Device          | Package<br>Type | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-----------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| SN74LVC1G97DBVR | SOT-23          | DBV                | 6 | 3000 | 178.0                    | 9.2                      | 3.3        | 3.2        | 1.55       | 4.0        | 8.0       | Q3               |
| SN74LVC1G97DBVR | SOT-23          | DBV                | 6 | 3000 | 180.0                    | 9.2                      | 3.17       | 3.23       | 1.37       | 4.0        | 8.0       | Q3               |
| SN74LVC1G97DBVT | SOT-23          | DBV                | 6 | 250  | 178.0                    | 9.2                      | 3.3        | 3.2        | 1.55       | 4.0        | 8.0       | Q3               |
| SN74LVC1G97DBVT | SOT-23          | DBV                | 6 | 250  | 180.0                    | 9.2                      | 3.17       | 3.23       | 1.37       | 4.0        | 8.0       | Q3               |
| SN74LVC1G97DCKR | SC70            | DCK                | 6 | 3000 | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| SN74LVC1G97DCKR | SC70            | DCK                | 6 | 3000 | 180.0                    | 9.2                      | 2.3        | 2.55       | 1.2        | 4.0        | 8.0       | Q3               |
| SN74LVC1G97DCKT | SC70            | DCK                | 6 | 250  | 180.0                    | 9.2                      | 2.3        | 2.55       | 1.2        | 4.0        | 8.0       | Q3               |
| SN74LVC1G97DCKT | SC70            | DCK                | 6 | 250  | 178.0                    | 9.2                      | 2.4        | 2.4        | 1.22       | 4.0        | 8.0       | Q3               |
| SN74LVC1G97DCKT | SC70            | DCK                | 6 | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| SN74LVC1G97DRLR | SOT             | DRL                | 6 | 4000 | 180.0                    | 8.4                      | 1.98       | 1.78       | 0.69       | 4.0        | 8.0       | Q3               |
| SN74LVC1G97DRLR | SOT             | DRL                | 6 | 4000 | 180.0                    | 9.5                      | 1.78       | 1.78       | 0.69       | 4.0        | 8.0       | Q3               |
| SN74LVC1G97DRYR | SON             | DRY                | 6 | 5000 | 180.0                    | 9.5                      | 1.15       | 1.6        | 0.75       | 4.0        | 8.0       | Q1               |
| SN74LVC1G97DSFR | SON             | DSF                | 6 | 5000 | 180.0                    | 9.5                      | 1.16       | 1.16       | 0.5        | 4.0        | 8.0       | Q2               |
| SN74LVC1G97YZPR | DSBGA           | YZP                | 6 | 3000 | 178.0                    | 9.2                      | 1.02       | 1.52       | 0.63       | 4.0        | 8.0       | Q1               |

www.ti.com 12-May-2015



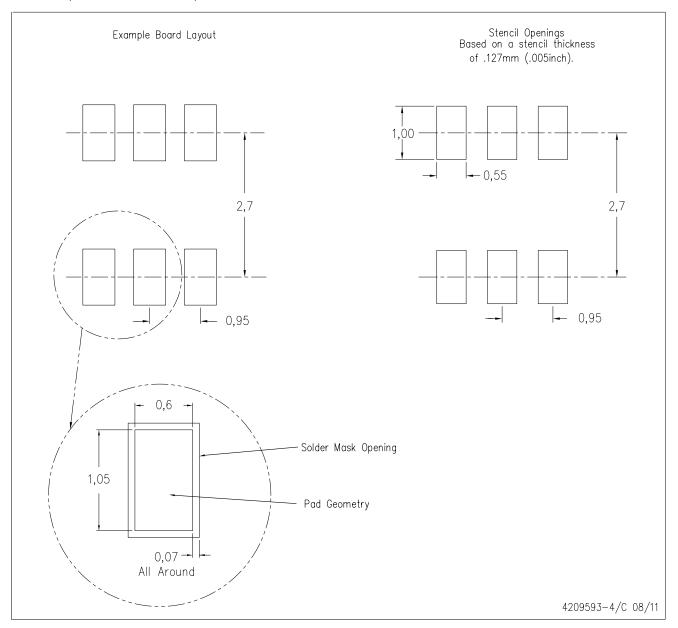

\*All dimensions are nominal

| Device          | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN74LVC1G97DBVR | SOT-23       | DBV             | 6    | 3000 | 180.0       | 180.0      | 18.0        |
| SN74LVC1G97DBVR | SOT-23       | DBV             | 6    | 3000 | 205.0       | 200.0      | 33.0        |
| SN74LVC1G97DBVT | SOT-23       | DBV             | 6    | 250  | 180.0       | 180.0      | 18.0        |
| SN74LVC1G97DBVT | SOT-23       | DBV             | 6    | 250  | 205.0       | 200.0      | 33.0        |
| SN74LVC1G97DCKR | SC70         | DCK             | 6    | 3000 | 180.0       | 180.0      | 18.0        |
| SN74LVC1G97DCKR | SC70         | DCK             | 6    | 3000 | 205.0       | 200.0      | 33.0        |
| SN74LVC1G97DCKT | SC70         | DCK             | 6    | 250  | 205.0       | 200.0      | 33.0        |
| SN74LVC1G97DCKT | SC70         | DCK             | 6    | 250  | 180.0       | 180.0      | 18.0        |
| SN74LVC1G97DCKT | SC70         | DCK             | 6    | 250  | 180.0       | 180.0      | 18.0        |
| SN74LVC1G97DRLR | SOT          | DRL             | 6    | 4000 | 202.0       | 201.0      | 28.0        |
| SN74LVC1G97DRLR | SOT          | DRL             | 6    | 4000 | 184.0       | 184.0      | 19.0        |
| SN74LVC1G97DRYR | SON          | DRY             | 6    | 5000 | 184.0       | 184.0      | 19.0        |
| SN74LVC1G97DSFR | SON          | DSF             | 6    | 5000 | 184.0       | 184.0      | 19.0        |
| SN74LVC1G97YZPR | DSBGA        | YZP             | 6    | 3000 | 220.0       | 220.0      | 35.0        |

# DBV (R-PDSO-G6)

# PLASTIC SMALL-OUTLINE PACKAGE




NOTES:

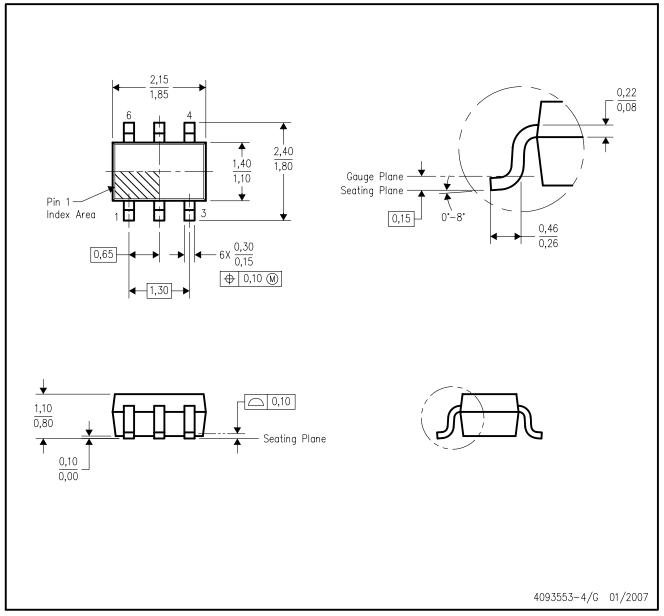
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- Falls within JEDEC MO-178 Variation AB, except minimum lead width.



# DBV (R-PDSO-G6)

# PLASTIC SMALL OUTLINE




NOTES:

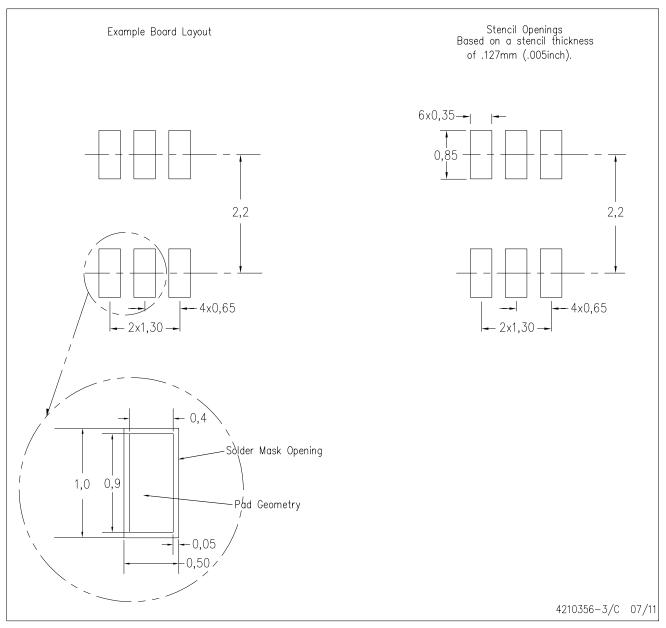
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.



# DCK (R-PDSO-G6)

# PLASTIC SMALL-OUTLINE PACKAGE




NOTES: A. All linear dimensions are in millimeters.

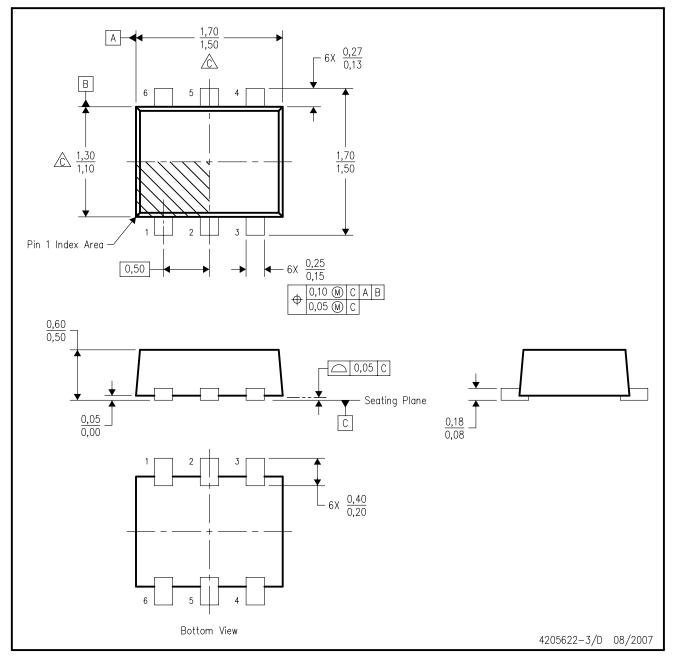
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AB.



# DCK (R-PDSO-G6)

# PLASTIC SMALL OUTLINE




NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

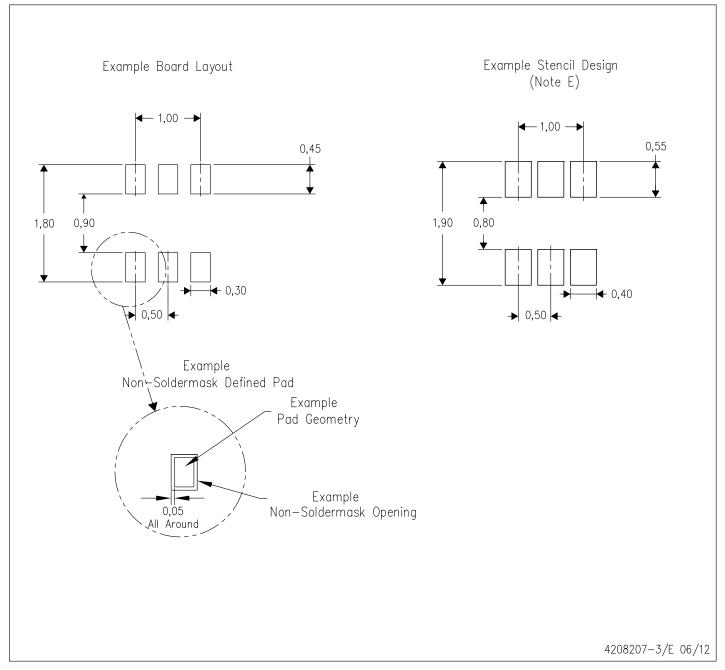


# DRL (R-PDSO-N6)

# PLASTIC SMALL OUTLINE



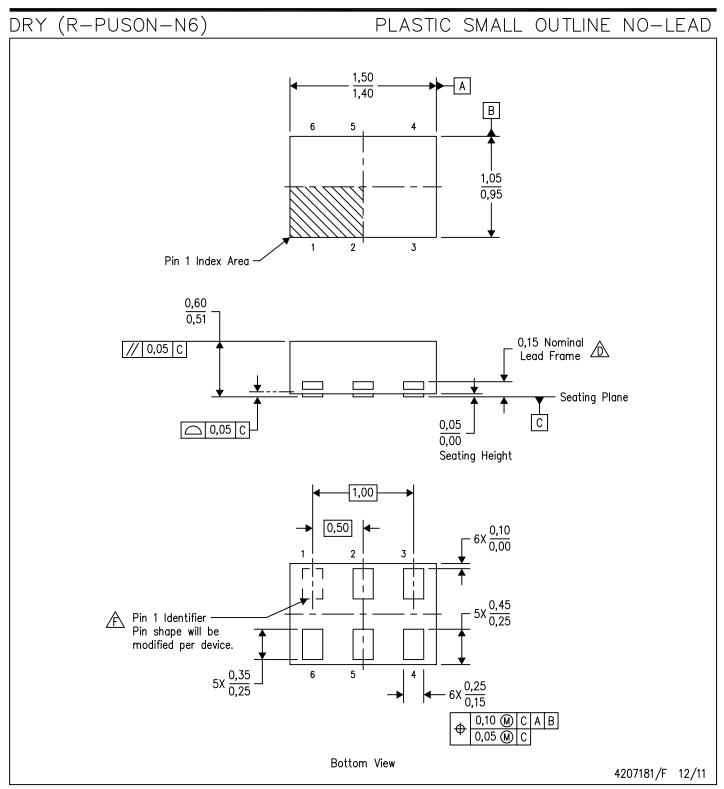
NOTES:


- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs.

  Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side.
- D. JEDEC package registration is pending.



# DRL (R-PDSO-N6)


# PLASTIC SMALL OUTLINE

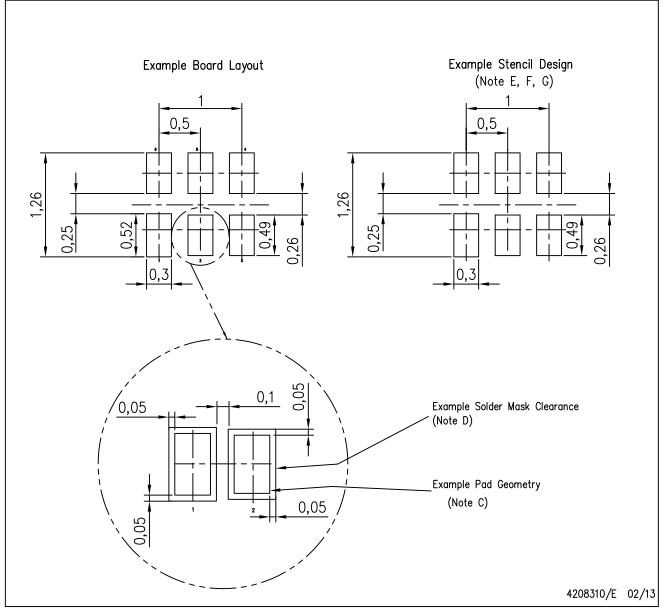


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.



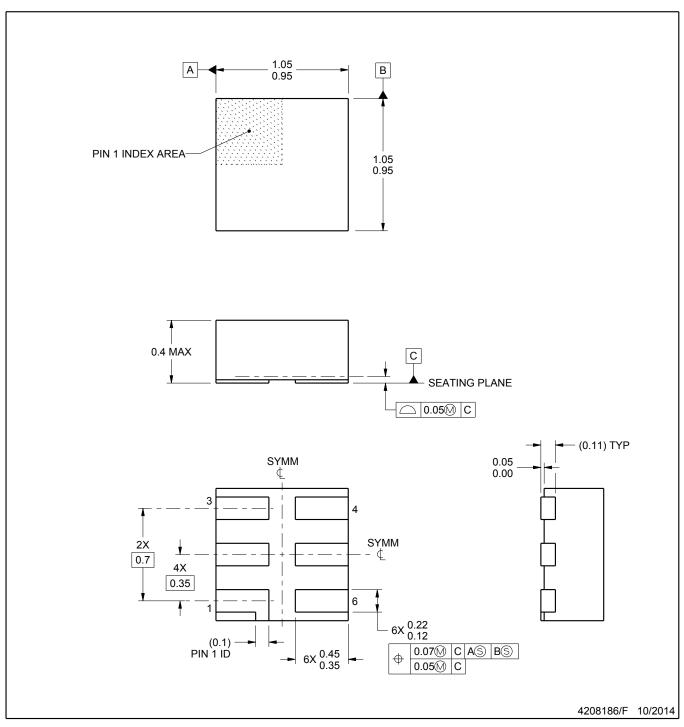



NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. SON (Small Outline No-Lead) package configuration.
- The exposed lead frame feature on side of package may or may not be present due to alternative lead frame designs.
- E. This package complies to JEDEC MO-287 variation UFAD.
- $frac{f}{K}$  See the additional figure in the Product Data Sheet for details regarding the pin 1 identifier shape.



# DRY (R-PUSON-N6)


# PLASTIC SMALL OUTLINE NO-LEAD

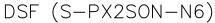


NOTES: A.

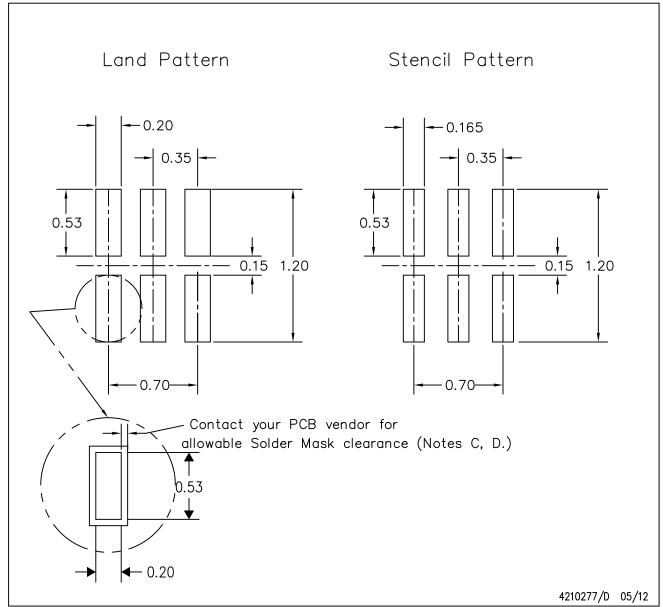
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.






#### NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.


  2. This drawing is subject to change without notice.

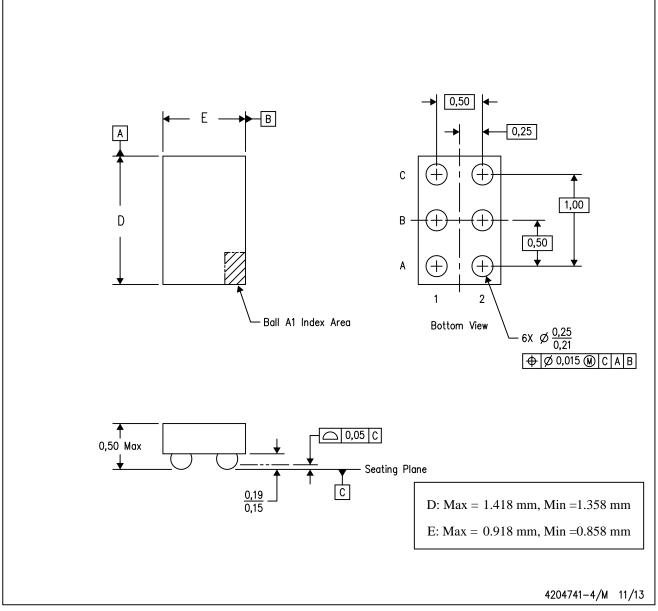
  3. Reference JEDEC registration MO-287, variation X2AAF.





# PLASTIC SMALL OUTLINE NO-LEAD




NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask.
- E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy.
- H. Component placement force should be minimized to prevent excessive paste block deformation.



YZP (R-XBGA-N6)

DIE-SIZE BALL GRID ARRAY



NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. NanoFree  $\mathbf{M}$  package configuration.

NanoFree is a trademark of Texas Instruments.



#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

#### Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity