

# **LMH6609**

# 900MHz Voltage Feedback Op Amp

### **General Description**

The LMH6609 is an ultra wideband, unity gain stable, low power, voltage feedback op amp that offers 900MHz bandwidth at a gain of 1, 1400V/µs slew rate and 90mA of linear output current.

The LMH6609 is designed with voltage feedback architecture for maximum flexibility especially for active filters and integrators. The LMH6609 has balanced, symmetrical inputs with well-matched bias currents and minimal offset voltage.

With Differential Gain of 0.01% and Differential Phase of 0.026° the LMH6609 is suited for video applications. The 90-mA of linear output current makes the LMH6609 suitable for multiple video loads and cable driving applications as well.

The supply voltage is specified at 6.6V and 10V. A low supply current of 7mA (at 10V supply) makes the LMH6609 useful in a wide variety of platforms, including portable or remote equipment that must run from battery power.

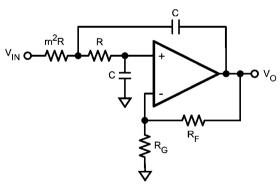
The LMH6609 is available in the industry standard 8-pin SOIC package and in the space-saving 5-pin SOT package. The LMH6609 is specified for operation over the -40°C to +85°C temperature range. The LMH6609 is manufactured in National Semiconductor's state-of-the-art VIP10™ technology for high performance.

#### **Features**

- 900MHz -3dB bandwidth ( $A_V = 1$ )
- Large signal bandwidth and slew rate 100% tested
- 280MHz –3dB bandwidth  $(A_V = +2, V_{OLIT} = 2V_{PP})$
- 90mA linear output current
- 1400V/µs slew rate
- Unity gain stable
- <1mV input Offset voltage</p>
- 7mA Supply current (no load)
- 6.6V to 12V supply voltage range
- 0.01%/0.026° differential gain/phase PAL
- 3.1nV/√Hz voltage noise
- Improved replacement for CLC440, 420, 426

### **Applications**

- Test equipment
- IF/RF amplifier
- A/D Input driver
- Active filter
- Integrator
- DAC output buffer
- Transimpedance amplifier


# **Typical Application**

$$K = 1 + \frac{R_F}{R_G}$$
  $Q = \frac{m}{1 + m^2(2 - K)}$   $\omega_o = \frac{1}{mRC}$ 

Q, K ARE UNITLESS.

 $\omega_{\rm O}$  IS RELATED TO BANDWIDTH AND IS IN UNITS OF RADIANS/SEC. DIVIDE  $\omega_{\rm O}$  BY  $2\pi$  TO GET IT IN Hz. REFER TO OA-26 FOR MORE INFORMATION.

20079037



20079038

Sallen Key Low Pass Filter with Equal C Values

# **Absolute Maximum Ratings** (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

V<sub>S</sub> (V+ - V-) ±6.6V  $I_{OUT}$ (Note 3) Common Mode Input Voltage V+ to V-Maximum Junction Temperature +150°C Storage Temperature Range -65°C to +150°C Lead Temperature Range +300°C

ESD Tolerance (Note 4)

Human Body Model 2000V Machine Model 200V

# **Operating Ratings** (Note 3)

Thermal Resistance

Package  $(\theta_{JC})$  $(\theta_{JA})$ 65°C/W 8-Pin SOIC 145°C/W 5-Pin SOT23 120°C/W 187°C/W -40°C +85°C Operating Temperature Nominal Supply Voltage (Note ±3.3V ±6V

#### ±5V Electrical Characteristics

Unless specified,  $A_V = +2$ ,  $R_F = 250\Omega$ :  $V_S = \pm 5V$ ,  $R_L = 100\Omega$ ; unless otherwise specified. **Boldface** limits apply over temperature Range. (Note 2)

| Symbol          | Parameter                           | Conditions                 | Min             | Тур   | Max               | Units  |
|-----------------|-------------------------------------|----------------------------|-----------------|-------|-------------------|--------|
| Frequency       | / Domain Response                   | ,                          |                 | •     |                   | •      |
| SSBW            | -3dB Bandwidth                      | $V_{OUT} = 0.5V_{PP}$      |                 | 260   |                   | MHz    |
| LSBW            | -3dB Bandwidth                      | $V_{OUT} = 4.0V_{PP}$      | 150             | 170   |                   | MHz    |
| SSBWG1          | −3dB Bandwidth A <sub>V</sub> = 1   | $V_{OUT} = 0.25V_{PP}$     |                 | 900   |                   | MHz    |
| GFP             | .1dB Bandwidth                      | Gain is Flat to .1dB       |                 | 130   |                   | MHz    |
| DG              | Differential Gain                   | $R_L = 150\Omega, 4.43MHz$ |                 | 0.01  |                   | %      |
| DP              | Differential Phase                  | $R_L = 150\Omega, 4.43MHz$ |                 | 0.026 |                   | deg    |
| Time Dom        | ain Response                        | - 1 -                      | · ·             |       |                   |        |
| TRS             | Rise and Fall Time                  | 1V Step                    |                 | 1.6   |                   | ns     |
| TRL             | 7                                   | 4V Step                    |                 | 2.6   |                   | ns     |
| t <sub>s</sub>  | Settling Time to 0.05%              | 2V Step                    |                 | 15    |                   | ns     |
| SR              | Slew Rate                           | 4V Step (Note 5)           | 1200            | 1400  |                   | V/µs   |
| Distortion      | and Noise Response                  |                            | 4               |       |                   |        |
| HD2             | 2 <sup>nd</sup> Harmonic Distortion | 2V <sub>PP</sub> , 20MHz   |                 | -63   |                   | dBc    |
| HD3             | 3 <sup>rd</sup> Harmonic Distortion | 2V <sub>PP</sub> , 20MHz   |                 | -57   |                   | dBc    |
|                 | Equivalent Input Noise              |                            |                 |       |                   |        |
| VN              | Voltage Noise                       | >1MHz                      |                 | 3.1   |                   | nV/√Hz |
| CN              | Current Noise                       | >1MHz                      |                 | 1.6   |                   | pA/√Hz |
| Static, DC      | Performance                         | -                          |                 |       |                   |        |
| V <sub>IO</sub> | Input Offset Voltage                |                            |                 | ±0.8  | ±2.5              | mV     |
|                 |                                     |                            |                 |       | ±3.5              |        |
|                 | Input Voltage Temperature Drift     |                            |                 | 4     |                   | μV/°C  |
| I <sub>BN</sub> | Input Bias Current                  |                            |                 | -2    | ±5                | μΑ     |
|                 |                                     |                            |                 |       | ±8                |        |
|                 | Bias Current Temperature Drift      |                            |                 | 11    |                   | nA/°C  |
| I <sub>BI</sub> | Input Offset Current                |                            |                 | .1    | ±1.5<br><b>±3</b> | μA     |
| PSRR            | Power Supply Rejection Ratio        | DC, 1V Step                | 67<br><b>65</b> | 73    |                   | dB     |
| CMRR            | Common Mode Rejection Ratio         | DC, 2V Step                | 67<br><b>65</b> | 73    |                   | dB     |
| I <sub>cc</sub> | Supply Current                      | R <sub>L</sub> = ∞         |                 | 7.0   | 7.8<br><b>8.5</b> | mA     |

| Symbol                    | Parameter             | Conditions               | Min  | Тур  | Max | Units |  |
|---------------------------|-----------------------|--------------------------|------|------|-----|-------|--|
| Miscellaneous Performance |                       |                          |      |      |     |       |  |
| R <sub>IN</sub>           | Input Resistance      |                          |      | 1    |     | MΩ    |  |
| C <sub>IN</sub>           | Input Capacitance     |                          |      | 1.2  |     | pF    |  |
| R <sub>OUT</sub>          | Output Resistance     | Closed Loop              |      | 0.3  |     | Ω     |  |
| V <sub>o</sub>            | Output Voltage Range  | R <sub>L</sub> = ∞       | ±3.6 | ±3.9 |     | V     |  |
|                           |                       | _                        | ±3.3 |      |     |       |  |
| V <sub>OL</sub>           |                       | $R_L = 100\Omega$        | ±3.2 | ±3.5 |     | V     |  |
|                           |                       | _                        | ±3.0 |      |     |       |  |
| CMIR                      | Input Voltage Range   | Common Mode, CMRR > 60dB | ±2.8 | ±3.0 |     | V     |  |
|                           |                       |                          | ±2.5 |      |     |       |  |
| Io                        | Linear Output Current | V <sub>OUT</sub>         | ±60  | ±90  |     | mA    |  |
| -                         |                       |                          | ±50  |      |     |       |  |

# ±3.3V Electrical Characteristics

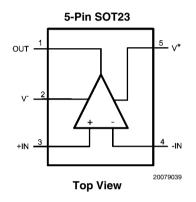
Unless specified,  $A_V = +2$ ,  $R_F = 250\Omega$ :  $V_S = \pm 3.3V$ ,  $R_L = 100\Omega$ ; unless otherwise specified. **Boldface** limits apply over temperature Range. (*Note 2*)

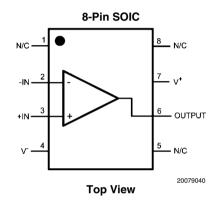
| Symbol           | Parameter                           | Conditions                 | Min  | Тур  | Max               | Units  |
|------------------|-------------------------------------|----------------------------|------|------|-------------------|--------|
| Frequenc         | y Domain Response                   | •                          | •    | •    |                   |        |
| SSBW             | -3dB Bandwidth                      | $V_{OUT} = 0.5V_{PP}$      |      | 180  |                   | MHz    |
| LSBW             | -3dB Bandwidth                      | $V_{OUT} = 3.0V_{PP}$      |      | 110  |                   | MHz    |
| SSBWG1           | −3dB Bandwidth A <sub>V</sub> = 1   | $V_{OUT} = 0.25V_{PP}$     |      | 450  |                   | MHz    |
| GFP              | .1dB Bandwidth                      | $V_{OUT} = 1V_{PP}$        |      | 40   |                   | MHz    |
| DG               | Differential Gain                   | $R_L = 150\Omega, 4.43MHz$ |      | .01  |                   | %      |
| DP               | Differential Phase                  | $R_L = 150\Omega, 4.43MHz$ |      | .06  |                   | deg    |
| Time Dor         | nain Response                       |                            | ,    | !    |                   |        |
| TRL              |                                     | 1V Step                    |      | 2.2  |                   | ns     |
| SR               | Slew Rate                           | 2V Step (Note 5)           |      | 800  |                   | V/µs   |
| Distortio        | n and Noise Response                |                            |      |      |                   |        |
| HD2              | 2 <sup>nd</sup> Harmonic Distortion | 2V <sub>PP</sub> , 20MHz   |      | -63  |                   | dBc    |
| HD3              | 3 <sup>rd</sup> Harmonic Distortion | 2V <sub>PP</sub> , 20MHz   |      | -43  |                   | dBc    |
|                  | Equivalent Input Noise              |                            |      |      |                   |        |
| VN               | Voltage Noise                       | >1MHz                      |      | 3.7  |                   | nV/√Hz |
| CN               | Current Noise                       | >1MHz                      |      | 1.1  |                   | pA/√Hz |
| Static, DO       | Performance                         | '                          | 1    |      |                   |        |
| V <sub>IO</sub>  | Input Offset Voltage                |                            |      | 0.8  | ±2.5              | mV     |
|                  |                                     |                            |      |      | ±3.5              |        |
| I <sub>BN</sub>  | Input Bias Current                  |                            |      | -1   | ±3<br><b>±6</b>   | μA     |
| I <sub>BI</sub>  | Input Offset Current                |                            |      | 0    | ±1.5<br><b>±3</b> | μΑ     |
| PSRR             | Power Supply Rejection Ratio        | DC, .5V Step               | 67   | 73   |                   | dB     |
| CMRR             | Common Mode Rejection Ratio         | DC, 1V Step                | 67   | 75   |                   | dB     |
| I <sub>cc</sub>  | Supply Current                      | R <sub>L</sub> = ∞         |      | 3.6  | 5<br><b>6</b>     | mA     |
| Miscellan        | eous Performance                    |                            |      | ı    |                   | 1      |
| R <sub>OUT</sub> | Input Resistance                    | Close Loop                 |      | .05  |                   | Ω      |
| V <sub>O</sub>   | Output Voltage Range                | $R_L = \infty$             | ±2.1 | ±2.3 |                   | V      |
| V <sub>OL</sub>  | 7                                   | $R_L = 100\Omega$          | ±1.9 | ±2.0 |                   | V      |

| Symbol | Parameter             | Conditions       | Min | Тур  | Max | Units |
|--------|-----------------------|------------------|-----|------|-----|-------|
| CMIR   | Input Voltage Range   | Common Mode      |     | ±1.3 |     | V     |
| Io     | Linear Output Current | V <sub>OUT</sub> | ±30 | ±45  |     | mA    |

**Note 1:** Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications, see the Electrical Characteristics tables.

Note 2: Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that  $T_J = T_A$ . No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self heating where  $T_J > T_A$ . See Applications Section for information on temperature derating of this device. Min/Max ratings are based on product characterization and simulation. Individual parameters are tested as noted.


Note 3: The maximum output current (I<sub>OUT</sub>) is determined by device power dissipation limitations. See the Power Dissipation section of the Application Section for more details.

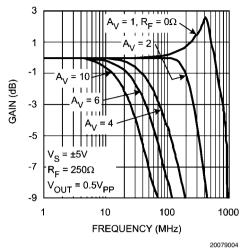

Note 4: Human body model,  $1.5k\Omega$  in series with 100pF. Machine model,  $0\Omega$  In series with 200pF.

Note 5: rate is Average of Rising and Falling 40-60% slew rates.

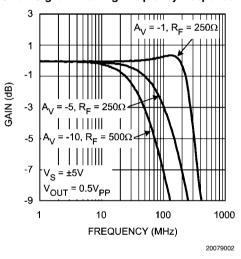
Note 6: Nominal Supply voltage range is for supplies with regulation of 10% or better.

# **Connection Diagrams**

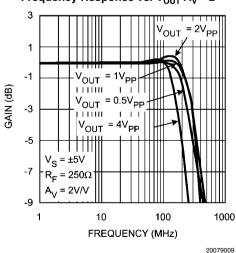




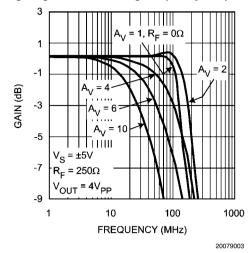

# **Ordering Information**


| Package     | Part Number | Package Marking | Transport Media          | NSC Drawing |  |
|-------------|-------------|-----------------|--------------------------|-------------|--|
| 8-Pin SOIC  | LMH6609MA   | LMH6609MA       | 95 Units/Rails           | M08A        |  |
| 6-PIII 50IC | LMH6609MAX  | LIVIHOOU9IVIA   | 2.5k Units Tape and Reel |             |  |
| 5-SOT23     | LMH6609MF   | A89A            | 1k Units Tape and Reel   | MF05A       |  |
| 5-50123     | LMH6609MFX  | Aosa            | 2.5k Units Tape and Reel | IVIFUDA     |  |

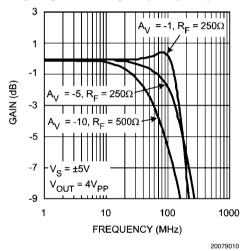
# **Typical Performance Characteristics**


#### **Small Signal Non-Inverting Frequency Response**

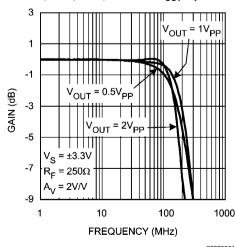



#### **Small Signal Inverting Frequency Response**




#### Frequency Response vs. $V_{OUT} A_V = 2$



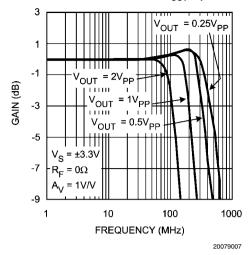

#### **Large Signal Non-Inverting Frequency Response**



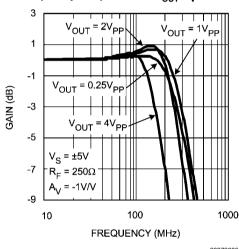
#### **Large Signal Inverting Frequency Response**



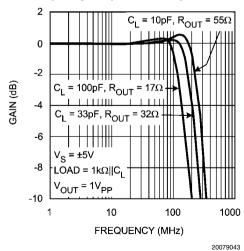
# Frequency Response vs. $V_{OUT} A_V = 2$



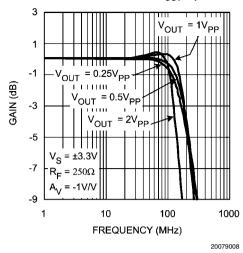

20079001


www.national.com

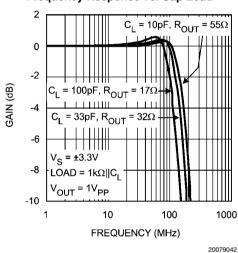
5


### Frequency Response vs. $V_{OUT} A_V = 1$

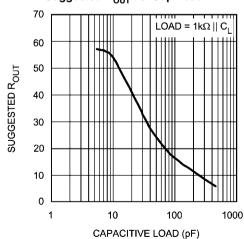



### Frequency Response vs. $V_{OUT} A_V = -1$

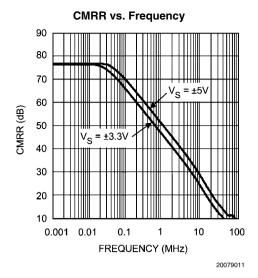



#### Frequency Response vs. Cap Load



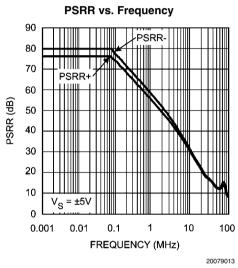

#### Frequency Response vs. $V_{OUT} A_V = -1$

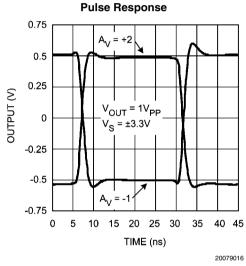


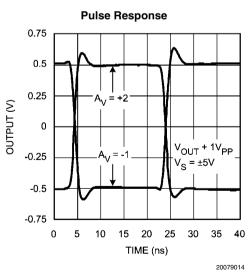

#### Frequency Response vs. Cap Load

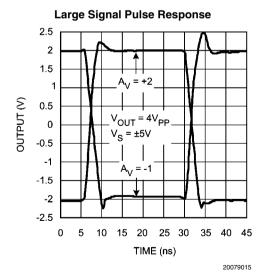


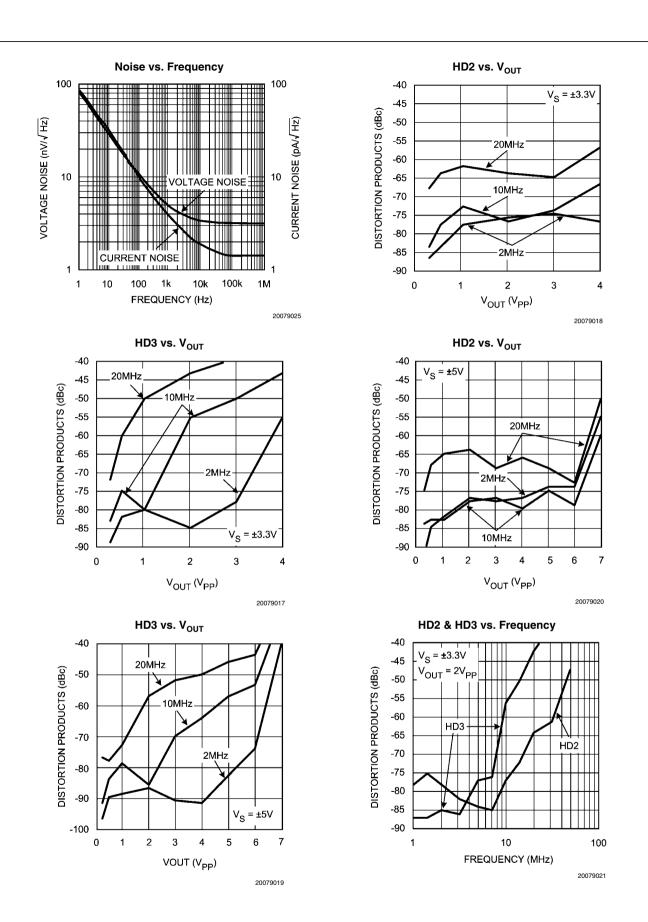
#### Suggested $R_{\rm OUT}$ vs. Cap Load

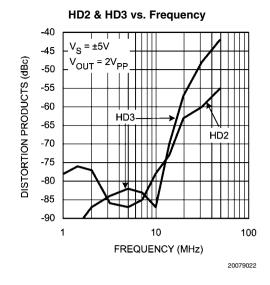


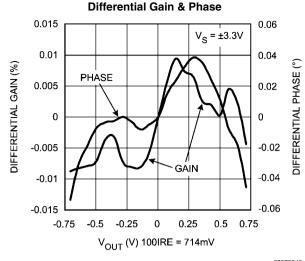


20079041

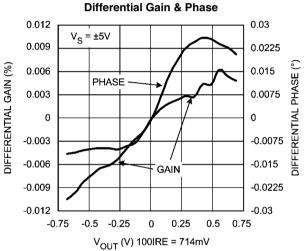


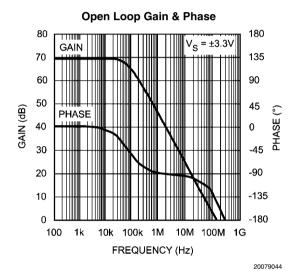



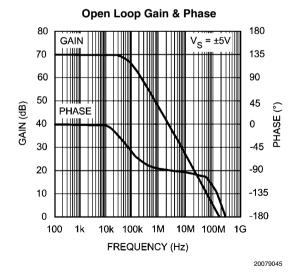


**PSRR vs. Frequency** 














# **Application Section**GENERAL DESIGN EQUATION

The LMH6609 is a unity gain stable voltage feedback amplifier. The matched input bias currents track well over temperature. This allows the DC offset to be minimized by matching the impedance seen by both inputs.

# NON-INVERTING GAIN: 1-

# INVERTING GAIN:

#### **GAIN**

The non-inverting and inverting gain equations for the LMH6609 are as follows:

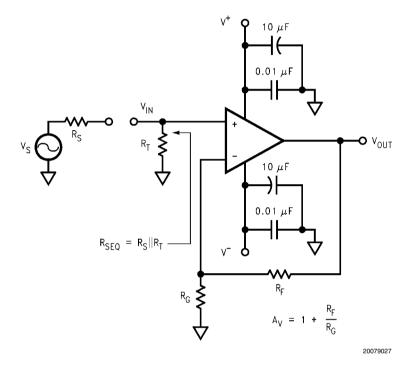
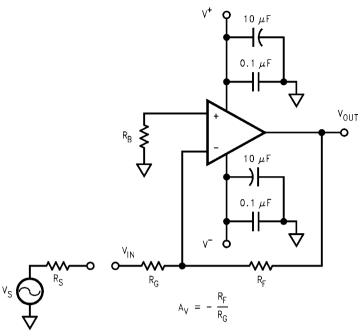




FIGURE 1. Typical Non-Inverting Application



20079028

FIGURE 2. Typical Inverting Application

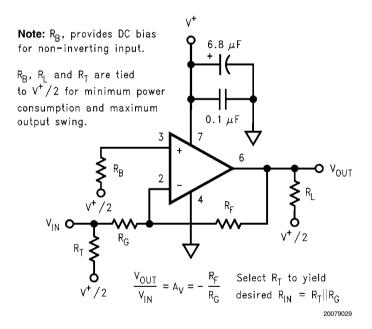



FIGURE 3. Single Supply Inverting

11

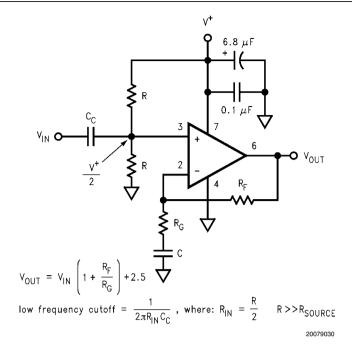



FIGURE 4. AC Coupled Non-Inverting

#### **GAIN BANDWIDTH PRODUCT**

The LMH6609 is a voltage feedback amplifier, whose closed-loop bandwidth is approximately equal to the gain-bandwidth product (GBP) divided by the gain  $(A_V)$ . For gains greater than 5,  $A_V$  sets the closed-loop bandwidth of the LMH6609.

CLOSED LOOP BANDWIDTH = 
$$\frac{GBP}{A_{V}}$$

$$A_V = \frac{(R_F + R_G)}{R_G}$$

GBP = 240MHz

20079031

For Gains less than 5, refer to the frequency response plots to determine maximum bandwidth. For large signal bandwidth the slew rate is a more accurate predictor of bandwidth.

$$f_{MAX} = \frac{S_R}{2\pi V_P}$$

2007903

Where  $f_{MAX}$  = bandwidth,  $S_{R}$  = Slew rate and  $V_{P}$  = peak amplitude.

#### **OUTPUT DRIVE AND SETTLING TIME PERFORMANCE**

The LMH6609 has large output current capability. The 100mA of output current makes the LMH6609 an excellent choice for applications such as:

- Video Line Drivers
- Distribution Amplifiers

When driving a capacitive load or coaxial cable, include a series resistance  $R_{OUT}$  to back match or improve settling time. Refer to the Driving Capacitive Loads section for guidance on selecting an output resistor for driving capacitive loads.

#### **EVALUATION BOARDS**

National Semiconductor offers the following evaluation boards as a guide for high frequency layout and as an aid in device testing and characterization. Many of the datasheet plots were measured with these boards.

| Device    | Package | Board Part # |
|-----------|---------|--------------|
| LMH6609MA | SOIC    | LMH730227    |
| LMH6609MF | SOT-23  | LMH730216    |

See the LMH6609 Product Folder on www.national.com for evaluation board availability and ordering information.

#### **CIRCUIT LAYOUT CONSIDERATION**

A proper printed circuit layout is essential for achieving high frequency performance. National provides evaluation boards for the LMH6609 as shown above. These boards were laid out for optimum, high-speed performance. The ground plane was removed near the input and output pins to reduce parasitic capacitance. Also, all trace lengths were minimized to reduce series inductances.

Supply bypassing is required for the amplifiers performance. The bypass capacitors provide a low impedance return current path at the supply pins. They also provide high frequency filtering on the power supply traces.  $10\mu F$  tantalum and .  $01\mu F$  capacitors are recommended on both supplies (from supply to ground). In addition a .1 $\mu F$  ceramic capacitor can be added from V+ to V- to aid in second harmonic suppression.

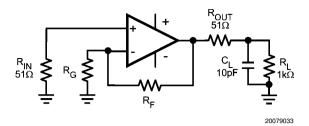



FIGURE 5. Driving Capacitive Loads with R<sub>OUT</sub> for Improved Stability

#### **DRIVING CAPACITIVE LOADS**

Capacitive output loading applications will benefit from the use of a series output resistor  $R_{OUT}$ . Figure 5 shows the use of a series output resistor,  $R_{OUT}$  as it might be applied when driving an analog to digital converter. The charts "Suggested  $R_{O}$  vs. Cap Load" in the Typical Performance Section give a recommended value for mitigating capacitive loads. The values suggested in the charts are selected for .5dB or less of peaking in the frequency response. This gives a good compromise between settling time and bandwidth. For applications where maximum frequency response is needed and some peaking is tolerable, the value of  $R_{O}$  can be reduced slightly from the recommended values. There will be amplitude lost in the series resistor unless the gain is adjusted to compensate; this effect is most noticeable with heavy resistive loads.

#### **COMPONENT SELECTION AND FEEDBACK RESISTOR**

Surface mount components are highly recommended for the LMH6609. Leaded components will introduce unpredictable parasitic loading that will interfere with proper device operation. Do not use wire wound resistors.

The LMH6609 operates best with a feedback resistor of approximately  $250\Omega$  for all gains of +2 and greater and for -1 and less. With lower gains in particular, large value feedback resistors will exaggerate the effects of parasitic capacitances and may lead to ringing on the pulse response and frequency response peaking. Large value resistors also add undesirable thermal noise. Feedback resistors that are much below  $100\Omega$  will load the output stage, which will reduce voltage output swing, increase device power dissipation, increase distortion and reduce current available for driving the load.

In the buffer configuration the output should be shorted directly to the inverting input. This feedback does not load the output stage because the inverting input is a high impedance point and there is no gain set resistor to ground.

#### **OPTIMIZING DC ACCURACY**

The LMH6609 offers excellent DC accuracy. The well-matched inputs of this amplifier allows even better performance if care is taken to balance the impedances seen by the two inputs. The parallel combination of the gain setting  $R_{\rm G}$  and feedback  $R_{\rm F}$  resistors should be equal to  $R_{\rm SEQ}$ , the resistance of the source driving the op amp in parallel with any terminating Resistor (See *Figure 1*). Combining this with the non inverting gain equation gives the following parameters:

$$R_F = A_{VRSEQ}$$

$$R_G = R_F/(A_V-1)$$

For Inverting gains the bias current cancellation is accomplished by placing a resistor  $R_{\rm B}$  on the non-inverting input

equal in value to the resistance seen by the inverting input (See *Figure 2*).  $R_{\rm B}$  =  $R_{\rm F}$  || ( $R_{\rm G}$  +  $R_{\rm S}$ )

The additional noise contribution of  $R_{\rm B}$  can be minimized by the use of a shunt capacitor (not shown).

#### POWER DISSIPATION

The LMH6609 has the ability to drive large currents into low impedance loads. Some combinations of ambient temperature and device loading could result in device overheating. For most conditions peak power values are not as important as RMS powers. To determine the maximum allowable power dissipation for the LMH6609 use the following formula:

$$P_{MAX} = (150^{\circ} - T_{AMB})/\theta_{JA}$$

Where  $T_{AMB}=$  Ambient temperature (°C) and  $\theta JA=$  Thermal resistance, from junction to ambient, for a given package (°C/W). For the SOIC package  $\theta JA$  is  $148^{\circ}$ C/W, for the SOT it is  $250^{\circ}$ C/W.  $150^{\circ}$ C is the absolute maximum limit for the internal temperature of the device.

Either forced air cooling or a heat sink can greatly increase the power handling capability for the LMH6609.

#### **VIDEO PERFORMANCE**

The LMH6609 has been designed to provide good performance with both PAL and NTSC composite video signals. The LMH6609 is specified for PAL signals. NTSC performance is typically marginally better due to the lower frequency content of the signal. Performance degrades as the loading is increased, therefore best performance will be obtained with back-terminated loads. The back termination reduces reflections from the transmission line and effectively masks transmission line and other parasitic capacitances from the amplifier output stage. This means that the device should be configured for a gain of 2 in order to have a net gain of 1 after the terminating resistor. (See *Figure 6*)

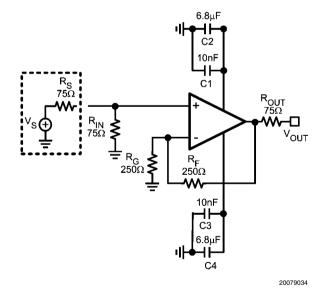



FIGURE 6. Typical Video Application

#### **ESD PROTECTION**

The LMH6609 is protected against electrostatic discharge (ESD) on all pins. The LMH6609 will survive 2000V Human Body model or 200V Machine model events.

Under closed loop operation the ESD diodes have no effect on circuit performance. There are occasions, however, when the ESD diodes may be evident. For instance, if the amplifier

is powered down and a large input signal is applied the ESD diodes will conduct.

#### TRANSIMPEDANCE AMPLIFIER

The low input current noise and unity gain stability of the LMH6609 make it an excellent choice for transimpedance applications. Figure 7 illustrates a low noise transimpedance amplifier that is commonly implemented with photo diodes. R<sub>E</sub> sets the transimpedance gain. The photo diode current multiplied by R<sub>F</sub> determines the output voltage.

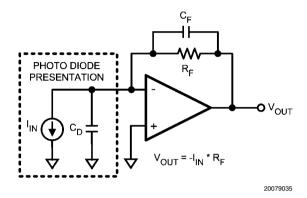



FIGURE 7. Transimpedance Amplifier

The capacitances are defined as:

- C<sub>D</sub> = Equivalent Diode Capacitance
   C<sub>F</sub> = Feedback Capacitance

The feedback capacitor is used to give optimum flatness and stability. As a starting point the feedback capacitance should be chosen as ½ of the Diode capacitance. Lower feedback capacitors will peak frequency response.

#### Rectifier

The large bandwidth of the LMH6609 allows for high-speed rectification. A common rectifier topology is shown in Figure 8. R<sub>1</sub> and R<sub>2</sub> set the gain of the rectifier.

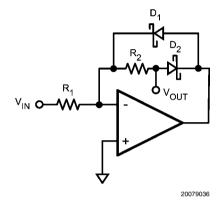
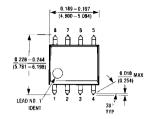
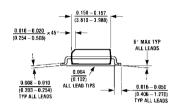
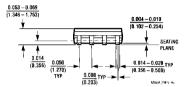
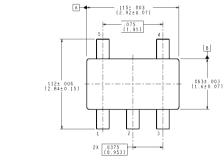
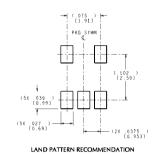
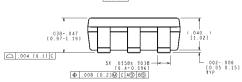
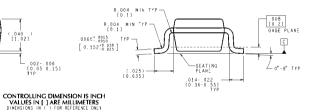






FIGURE 8. Rectifier Topology


# Physical Dimensions inches (millimeters) unless otherwise noted




8-Pin SOIC NS Product Number M08A









5-Pin SOT23 NS Product Number MF05A

MF05A (Rev D)

## **Notes**

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

| Pr                             | oducts                       | Design Support                  |                                |  |  |
|--------------------------------|------------------------------|---------------------------------|--------------------------------|--|--|
| Amplifiers                     | www.national.com/amplifiers  | WEBENCH® Tools                  | www.national.com/webench       |  |  |
| Audio                          | www.national.com/audio       | App Notes                       | www.national.com/appnotes      |  |  |
| Clock and Timing               | www.national.com/timing      | Reference Designs               | www.national.com/refdesigns    |  |  |
| Data Converters                | www.national.com/adc         | Samples                         | www.national.com/samples       |  |  |
| Interface                      | www.national.com/interface   | Eval Boards                     | www.national.com/evalboards    |  |  |
| LVDS                           | www.national.com/lvds        | Packaging                       | www.national.com/packaging     |  |  |
| Power Management               | www.national.com/power       | Green Compliance                | www.national.com/quality/green |  |  |
| Switching Regulators           | www.national.com/switchers   | Distributors                    | www.national.com/contacts      |  |  |
| LDOs                           | www.national.com/ldo         | Quality and Reliability         | www.national.com/quality       |  |  |
| LED Lighting                   | www.national.com/led         | Feedback/Support                | www.national.com/feedback      |  |  |
| Voltage References             | www.national.com/vref        | Design Made Easy                | www.national.com/easy          |  |  |
| PowerWise® Solutions           | www.national.com/powerwise   | Applications & Markets          | www.national.com/solutions     |  |  |
| Serial Digital Interface (SDI) | www.national.com/sdi         | Mil/Aero                        | www.national.com/milaero       |  |  |
| Temperature Sensors            | www.national.com/tempsensors | SolarMagic™                     | www.national.com/solarmagic    |  |  |
| PLL/VCO                        | www.national.com/wireless    | PowerWise® Design<br>University | www.national.com/training      |  |  |

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com



National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com