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ABSTRACT

Selection of the right crystal, correct load circuit, and proper board layout are important
for a stable crystal oscillator. This application report summarizes crystal oscillator
function and explains the parameters to select the correct crystal for MSP430
ultralow-power operation. In addition, hints and examples for correct board layout are
given. The document also contains detailed information on the possible oscillator tests
to ensure stable oscillator operation in mass production.
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1 The 32-kHz Crystal Oscillator

1.1 The Crystal
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The 32-kHz Crystal Oscillator

For an ultralow-power design, only low-frequency crystals are usable, because with higher-frequency
oscillators, the current consumption increases significantly. Tuning-fork crystals typically have a frequency
range of 10 kHz to 200 kHz in fundamental mode and a maximum drive level of 1 µW. These parameters
make them the first choice for the 32768-Hz ultralow-power crystal oscillator in MSP430 microcontrollers.

Every MSP430 has a built-in crystal oscillator that can be operated with a tuning-fork crystal at 32768 Hz
(often called 32 kHz). The mechanical oscillation (see Figure 1) of a 32-kHz tuning fork crystal is
converted into an electrical signal. The equivalent electrical circuit of a crystal (see Figure 2) gives these
electrical characteristics:

• CM motional capacitance
• LM motional inductance
• RM mechanical losses during oscillation
• C0 parasitic capacitance of package and pins

Figure 1. Mechanical Oscillation of a Tuning-Fork
Crystal Figure 2. Equivalent Circuit of a Crystal

The series-resonance circuit consisting of CM, LM, and RM represents the electrical equivalent of the
mechanical resonance of the tuning fork. The frequency characteristics of a crystal’s reactance are
shown in Figure 3 and give two special frequencies:

• FS (series resonance frequency) solely depends on CM and LM and gives a very stable
frequency value.

• FA (anti-resonance or parallel-resonance frequency), in addition, also depends on C0, the
parasitic capacitance of package and pins, which is not as precise as the other parameters, CM
and LM. Hence, FA gives a less well-defined frequency than FS.

Figure 3. Reactance of a Crystal
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1.2 The Oscillator
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2 Crystal Selection

Crystal Selection

The equivalent series resistance (ESR) can be calculated with the formula in Equation 1 from the
equivalent circuit in Figure 2:

C0 is shown in Figure 2 and given by the crystal’s data sheet, as is RM or ESR. CL is the required
load capacitance of a crystal and is also given by the crystal’s data sheet.

The principle circuit of an oscillator is shown in Figure 4. Two basic parameters must be fulfilled to enable
oscillation:

• Closed loop gain ≥ 1 for oscillator start up and
closed loop gain = 1 for stable oscillation

• Closed loop phase shift = n × 360°

Figure 4. Principle Pierce Oscillator Circuit

Figure 4 shows the Pierce oscillator circuit, which takes advantage of the crystal’s serial resonance
frequency. The inverting amplifier gives a phase shift of approximately 180°. The feedback circuit
consisting of a 32-kHz crystal and two load capacitors adds another 180° phase shift. This results in the
required oscillator closed-loop phase shift of 360°. The closed-loop gain must be adjusted with the gain of
the inverting amplifier. All MSP430 32-kHz crystal oscillators are Pierce oscillators.

The most important parameters when choosing a crystal are:

• Crystal’s required effective load capacitance (for 32-kHz crystals, typically 6 pF to 15 pF)
• Crystal’s ESR (for 32-kHz crystals, typically 30 kΩ to 100 kΩ)
• Tolerance (typically 5 ppm to 30 ppm)

All of these crystal parameters are given by the crystal data sheet but can be also measured at the real
crystal using, for example, crystal impedance bridge, a vector voltmeter, or a network analyzer. It is very
important to know these parameters, because otherwise it is not possible to design a stable oscillator.

SLAA322–August 2006 MSP430 32-kHz Crystal Oscillators 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA322


www.ti.com

2.1 Effective Load Capacitance
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Crystal Selection

The Pierce oscillator (see Figure 4) uses two load capacitors, CL1 and CL2, as load for the crystal. These
capacitors generate, together with the crystal’s inductance (LM) (see Figure 2), the required 180° phase
shift of the feedback loop. From the view of the crystal, these capacitors are a serial connection through
GND. Hence, if using two equal capacitors, the values of these capacitors must be twice the required load
capacitance. It is also important to consider all parasitic capacitances, such as PCB traces and MSP430
pin capacitance, for the calculation of the necessary capacitors according to the formula in Equation 2.

Where:
C’L1 = CL1 + CL1Parasitic

C’L2 = CL2 + CL2Parasitic

When using equal capacitors for CL1 and CL2 and a symmetric layout with equal parasitic capacitance on
both crystal pins, the effective load capacitance is shown in Equation 3.

Example:
Crystal requires 12 pF load.
Parasitic capacitance per pin is 2 pF.
CL1 = (2 × CLoad) – CParasitic = (2 × 12 pF) – 2 pF = 22 pF
CL2 = CL1 = 22 pF

One result of choosing the wrong load capacitors, which can be easily measured, is an incorrect
oscillation frequency. A typical curve, showing frequency vs load capacitance, is given in Figure 5.

Figure 5. Frequency vs Load Capacitance for a 0-ppm Crystal

All MSP430 32-kHz oscillators have built-in load capacitors, CL1 and CL2. In some MSP430 versions,
these load capacitors are fixed; in other MSP430 versions, the internal load capacitor values can be
programmed or external capacitors can be used. For details, see the data sheets and MSP430 family
user’s guides. The various MSP430 families have the following load capacitor configuration:

• MSP430x1xx: 6 pF (fixed effective capacitance with 12 pF per pin), external capacitors are not
recommended

• MSP430F2xx: 0 pF to 12.5 pF (programmable effective capacitance), external capacitors are possible
• MSP430F4xx: 0 pF to 10 pF (programmable effective capacitance), external capacitors are possible
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2.2 ESR Value
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Crystal Selection

The ESR value is an electrical representation of losses of the mechanical crystal oscillation. A larger
crystal loses less energy during oscillation, and this results in a lower ESR value. Small crystals,
especially SMD crystals, tend to have higher ESR. A higher ESR value reflects the higher losses of a
crystal.

The oscillator becomes unstable and stops oscillation if the ESR becomes too high. Hence, each oscillator
has maximum limits of the ESR value. The lower the ESR than the recommended maximum value, the
better the oscillator start up and stability.

A common test for oscillator stability is the negative resistance method (see Section 4.2). For this test,
ESR must be increased with an external resistor. The maximum value of this increased ESR is called the
oscillation allowance (OA). With this OA value, it is possible to make a judgment of the oscillator safety
factor (SF) margin. It is good practice to do the negative resistance test, to avoid oscillator problems in
high-volume applications.

Table 1 lists typical OA values for the 32-kHz oscillators of various MSP430 families.

Note: If oscillation allowance for LF crystals (OALF) values are specified in an MSP430 data
sheet, this table does not apply, and only the data sheet values are valid.

Table 1. Typical Oscillation Allowance Values for the 32-kHz Oscillator

MSP430x1xx MSP430x2xx MSP430x4xx

CL1 = 6 pF CL1 = 6 pF CL1 = 12.5 pF CL1 = 6 pF CL1 = 12.5 pF

VCC = 3 V 185 kΩ 500 kΩ 200 kΩ 460 kΩ 180 kΩ

VCC = 2.2 V 88 kΩ 500 kΩ 200 kΩ 440 kΩ 170 kΩ

Refer to crystal manufacturer recommendation for 32-kHz crystals operating with MSP430 oscillators.

The ppm tolerance value given in the data sheet expresses the possible frequency deviation of the
resulting oscillator frequency, assuming that all other frequency-affecting parameters, such as effective
capacitive load, temperature, etc., are at recommended values.

Figure 6. Frequency Deviation of a Tuning-Fork Crystal Over Temperature
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2.4 Start-Up Time

3 PCB Design considerations

PCB Design considerations

It should be considered that the amount of the frequency variation due to temperature depends very much
on the crystal cut and the crystal shape. In comparison to some other crystal cuts, 32-kHz tuning-fork
crystals exhibit a relative high frequency drift over temperature. Figure 6 shows the typical frequency
deviation of a 0-ppm tuning-fork crystal over temperature. The ±ppm tolerance value, given in the crystal
data sheet, shifts the graph of the tuning-fork crystal up and down.

In case the 32-kHz crystal oscillator frequency is used for precision measurements over a wide
temperature range, software can improve the measurement results by correcting the measured values
according to the curve in Figure 6. In this case, the real curve for the used crystal should be obtained from
the crystal manufacturer.

A test for oscillator frequency and a method to adjust the oscillator frequency is explained in Section 4.1.

When initially energized, the only signal in the circuit is noise. That component of noise whose frequency
satisfies the phase condition for oscillation is propagated around the loop with increasing amplitude. The
amplitude continues to increase until the amplifier gain is reduced either by nonlinearities of the active
elements ("self-limiting Pierce", MSP430x1xx) or by some automatic level control (“controlled Pierce” with
AGC circuitry, MSP430x2xx and MSP430x4xx).

Start-up times between several hundred milliseconds and a few seconds are normal values for
low-frequency tuning-fork crystals, like 32768-Hz crystals. The start-up time of a crystal oscillator depends
on various factors:

• The oscillator frequency influences the start-up time. A 32-kHz crystal oscillator starts relatively slowly,
compared to a crystal oscillator with a high frequency, e.g., above 1 MHz.

• High Q-factor crystal oscillators typically start slower than crystal oscillators with higher frequency
tolerance.

• Crystal with low load capacitance typically start faster than crystals requiring high load capacitance.
• Crystals with low ESR start more quickly than high ESR crystals.
• Oscillators with high OA (Oscillation Allowance) start faster than low OA crystal oscillators.

The MSP430 LFXT1 32-kHz crystal oscillator is designed for ultralow-power consumption. According to
the data sheets, most MSP430 derivatives consume less than 1 µA when the 32-kHz oscillator, the clock
signal (ACLK), and a timer are running. Hence, the current flowing between the MSP430 pins, the crystal
and, if used, the external capacitors is extremely low. Long signal lines make the oscillator very sensitive
to EMC, ESD, and crosstalk. Even the best components cannot solve problems caused by a poor layout.

The crystal oscillator is an analog circuit and must be designed according to analog-board layout rules:

• Signal traces between the MSP430 pins, the crystal and, if used, the external capacitors must be as
short as possible. This minimizes parasitic capacitance and sensitivity to crosstalk and EMI. The
capacitance of the signal traces must be considered when dimensioning the load capacitors.

• Keep other digital signal lines, especially clock lines and frequently switching signal lines, as far away
from the crystal connections as possible. Crosstalk from digital signals may disturb the small-amplitude
sine-shaped oscillator signal.

• Reduce the parasitic capacitance between XIN and XOUT signals by routing them as far apart as
possible.

• The main oscillation loop current is flowing between the crystal and the load capacitors. This signal
path (crystal to CL1 to CL2 to crystal) should be kept as short as possible and should have a symmetric
layout. Hence, both capacitors' ground connections should always be as close together as possible.
Never route the ground connection between the capacitors all around the crystal, because this long
ground trace is sensitive to crosstalk and EMI.

• Guard the crystal traces with ground traces (guard ring). This ground guard ring must be clean ground.
This means that no current from and to other devices should be flowing through the guard ring. This
guard ring should be connected to AVSS of the MSP430 with a short trace. Never connect the ground
guard ring to any other ground signal on the board. Also avoid implementing ground loops.

6 MSP430 32-kHz Crystal Oscillators SLAA322–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA322


www.ti.com

GND Island
isolated by a gap from

the rest of the GND

GND Island
isolated by a gap from

the rest of the GND

�Isolated�

Gnd Island

MSP430F1232IRHB

PCB Design considerations

• With 2-layer boards, do not route any digital-signal lines on the opposite side of the PCB under the
crystal area. In any case, it is good design practice to fill the opposite side of the PCB with clean
ground and also connect this ground to AVSS of the MSP430.

• Connect the crystal housing to ground.
• In LF mode, the LFXT1 oscillator of MSP430x1xx requires a ≥5.1-MΩ resistor from XOUT to VSS when

VCC < 2.5 V. This is used to increase the drive level of the MSP430 amplifier at low VCC. Refer to the
data sheet for details.

Making use of the MSP430 built-in capacitors gives a simple layout, with only the crystal connected to the
XIN and XOUT pins of the MSP430. The traces between the MSP430 and the crystal should be as short
as possible, and a ground area should be placed under the crystal oscillator area. When using external
capacitors instead of the internal capacitors, the traces between the crystal and the capacitors and the
trace between the two capacitors should be as short as possible. Examples for recommended layouts are
shown in Figure 7. An additional ground guard ring could improve the performance.

Figure 7. Layout Without and With External Load Capacitors
(XIN and XOUT Neighboring Pins Are Standard Function Pins)

Some of the MSP430 devices have NC (not connected) pins neighboring the XIN and XOUT crystal
connection pins. In that case, it is recommended to make use of the situation and add a ground guard ring
around the crystal signals. This ground guard ring should have a short connection to the MSP430 VSS
pin. Layout examples for this scenario are shown in Figure 8. In all these examples, the section between
crystal and the load capacitors is laid out symmetrically.

Figure 8. Layout With External Capacitors and Ground Guard Ring
(XIN and XOUT Neighboring Pins Are NC Pins)

Examples for MSP430F41x and MSP430F1232IRHB
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4 Testing the Crystal Oscillator

4.1 Oscillator Frequency vs Load Capacitance

4.2 Negative Resistance Method

Testing the Crystal Oscillator

The following measurements help to verify the crystal oscillator stability:

• Oscillator frequency vs load capacitance
• Negative resistance method (Oscillation Allowance test)

– Start allowance
– Stop allowance

As shown in Figure 5, the crystal oscillator frequency is very much dependent on the load capacitance that
is connected. Hence, measuring the oscillator frequency gives a good indication if the load capacitors that
are used match the crystal requirements. This measurement also automatically includes the parasitic PCB
and pin capacitances of the application. The graph in Figure 5 shows typical 32-kHz crystal
characteristics. The characteristics (pullability curve) of the crystal should be provided by the crystal
manufacturer.

It is strongly recommended not to measure the oscillator frequency directly at the crystal pins. The
capacitance at the crystal pins is in the range of 10 pF, and the impedance on this signal line is several
megaohms. A typical passive probe has a capacitance in the range of 10 pF and an input impedance of
about 10 MΩ. Both values are in the range of the oscillator characteristics and heavily influence the
behavior of the crystal oscillators. The MSP430 internal digital ACLK clock signal always carries the clock
signal of the 32-kHz crystal oscillator. All MSP430 devices have the capability to output ALCK at one of
the I/O pins. Measuring at this digital ACLK output does not influence the crystal oscillator in any way.
ACLK still gives all necessary information to determine the stability and performance of the setup.

A frequency counter with a resolution and accuracy of at least 0.1 ppm in the targeted frequency range
should be used to measure the 32768-Hz clock signal. If, for example, the tolerance of the crystal is given
with ±30 ppm, the 32768-Hz clock frequency should be ±0.9 Hz accurate at room temperature. For a
±5-ppm crystal, the frequency should be within ±0.16 Hz when the correct capacitive load is connected.

Assuming the crystal itself has no tolerance, too low a capacitive load results in a higher oscillator
frequency than expected and, vice versa, the frequency is lower than the nominal value, if the load is too
high. Hence, if the oscillation frequency is too high, the value of load capacitors must be increased. When
a too low frequency is measured, it is necessary to decrease the value of the load capacitors. Comparing
the finally optimized capacitors with the crystal data sheet value for load capacitance gives the parasitic
capacitance added by the PCB layout and pins.

The negative resistance method is also called the Oscillation Allowance test or safety margin test. With
this test, the ESR safety factor is measured. As already stated in previous sections, the ESR value in the
equivalent circuit of a crystal (see Figure 2) represents the losses. These losses must be compensated by
the amplifier in the MPS430. If the losses exceed the drive capabilities of the amplifier, the oscillation
amplitude starts decreasing until it finally dies away, or the oscillator does not even start up. The ESR
value of a crystal increases with temperature. Thus, the oscillator may be working fine at room
temperature but may fail at higher temperatures. Also, higher humidity can increase the losses in the
oscillator, due to lower parasitic resistive values. To avoid time-consuming oscillator tests over all possible
environmental situations, the negative resistance test has been established. It gives a SF (Safety Factor)
value that allows the designer to assess, relatively easily, the safety margin of a particular oscillator setup.

For the negative resistance test, an additional resistor is added in series with the crystal, as shown in
Figure 9. The additional serial test resistance, RQ, is increased until the oscillator does not start up or a
running oscillation stops. It is good practice to lower the resistance until the oscillator works again, to
determine the critical value. This can be done using an SMD potentiometer that is suitable for RF, to add
as few parasitic values as possible. Because all parameters and the parasitic values of this potentiometer
contribute to the resulting parameters of the oscillator circuit, the final value of RQmax should be verified
with an SMD resistor.
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5 Crystal Oscillator in Production

Crystal Oscillator in Production

Figure 9. Negative Resistance Method With Added Resistor RQ

The test can be done during the oscillator start (Start Allowance) and it can be repeated for a running
oscillator to determine when oscillation dies away (Stop Allowance).

• Start Allowance: Resistor RQ is placed in series to the crystal. The power is then turned on, and it is
checked if the oscillator starts. For each new resistor value, the MSP430 must be powered down and
powered up again. The highest resistor value with which the oscillator still starts is the Start Allowance.

• Stop Allowance: Once the oscillator is running, the RQ potentiometer is increased until the oscillator
stops. The potentiometer can then be reduced again until the oscillation starts again. The highest
resistor value with which the oscillator still runs and does not stop is the Stop Allowance.

Once the critical values of RQ are measured, the OA and the SF should be calculated to allow a judgment
of the oscillator stability, as shown in Equation 4 and Equation 5.

Oscillation Allowance (OA)

Safety Factor (SF)

Table 2 gives a qualification of the SF and is based on the experience of major crystal manufacturers. If
the outcome of the investigations is a sufficient SF, then the assumption can be made that all reasonable
tolerances and variations of the parameters of the oscillator externals should be covered.

Table 2. Safety Factor

QUALIFICATION OF THE QUALIFICATIONSAFETY FACTOR (SF)

SF < 2 Unsafe

2 ≤ SF < 3 Suitable

3 ≤ SF < 5 Safe

SF ≥ 5 Very safe

In general, it needs to be considered that the 32-kHz crystal oscillator is an ultralow-power oscillator with
very low power consumption, in the range of significantly below 1 µA. Thus, it is critical for the
performance of the oscillator to maintain a certain quality and cleanness of the PCB. Also, the soldering
material should be selected with respect to this. The following sections provide some basic hints at these
points that should be considered.
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5.1 PCB Material, Quality, and Cleaning

5.2 Soldering and Contact Impedance

5.3 Environmental Influences, Temperature, and Humidity

Crystal Oscillator in Production

Beside other factors, which have been described in the previous sections and which are covered by circuit
theory, optimization of the components, and layout, there is another group of factors significantly affecting
the performance of the oscillator setup. These factors are the board-assembly production process and
assembly quality. In the previous sections, the ultralow-power character of the MSP430 oscillators has
been mentioned. Due to the optimization for the lowest possible current, the losses caused by parasitic
currents can have a significant impact on the overall oscillator performance. The soldering process,
dependent on the used flux material, leaves more or less critical residues on the PCB surface. Especially
in applications with a long lifetime and under unfavorable conditions, like high humidity and fast
temperature cycles that possibly cause humidity condensation on the printed circuit board, process
residuals are critical. The process residuals can lead to a decrease of the insulation of the sensitive
oscillator signal lines towards each other and neighboring signals on the PCB. High humidity can lead to
moisture condensation on the surface of the PCB and, together with process residuals, reduce the surface
resistivity of the board. Thus, it is strongly recommended to carefully select the materials for the soldering
process and use clean PCB material for the assembly process and cleaning afterwards, if needed,
especially when the factors described above apply.

When soldering, there are basically two different types of flux material. There are water-soluble flux
materials, which must be cleaned off after the soldering process by appropriate cleaning processes, and
there are "no clean" flux materials on the market. For specific cleaning procedures, refer to the
solder-paste manufacturer’s recommendation for the specific soldering paste and flux. Even when using
the "no clean" products in ultralow-power applications, PCB cleaning is recommended to achieve
maximum performance by removing flux residuals from the board after assembly. The flux residuals on
the board can cause leakage current paths, especially in humid environments.

In general, reduction of losses in the oscillator circuit leads to a better safety margin and, thus, also
increases performance and reliability. To keep the losses in the oscillator circuit as low as possible, it is
critical to keep contact impedance as low as possible.

The MSP430 package is qualified against JEDEC Std 020 to withstand the specified maximum peak
reflow temperature allowed at certain moisture sensitivity level (MSL). This is the maximum allowed reflow
profile. The solder-paste supplier usually supplies a suggested reflow profile that is within the
JEDEC Std 020 maximum range. Thus, the JEDEC recommendations for the soldering profile for devices
and the recommendations of the soldering materials supplier should be carefully followed, to achieve high
reliability and quality solder joints.

If the MSP430 package is to be exposed to any reflow temperatures after the liquid cleaning process, the
board with the mounted MSP430 package should be baked, to dry out the part prior to the following reflow
process. In this case, the devices must be baked according to the JEDEC Std 020 (24 hours at 125°C)
before processing through an additional solder-reflow step or performing a rework soldering.

A very important aspect is the increasing ESR at higher ambient temperature. Increasing ESR means
additional losses, thus, the safety margin of an oscillator setup decreases with higher ambient
temperature. As long as the safety factor test has shown good results, as classified in Table 2, and the
crystal is being used in the standard industrial temperature range, the application should work safely.

On the other hand, temperature cycles, especially fast temperature cycles combined with high ambient
humidity, can result in condensed water on the PCB. Together with soldering residues, dust, and other
board contaminations, which can easily happen in applications with a lifetime of several years and
non-air-proof housings, this may decrease the insulation of the oscillator signals towards each other and
towards neighboring signals on the PCB. Thus, it is a good practice to introduce a protective coating of the
crystal, the attached externals, and the MSP430 oscillator pins, to preserve the parameters and
performance of the oscillator over many years of operation in the field. If this recommendation is not
followed, a continuous degradation of the oscillator performance can occur and should be taken into
account.
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